1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Відповідь:
Пояснення:
1. Нехай з к виробів лише другий є нестандартним, тоді
р= 0.8×0.2×0.8×0.8×=0.2×0.8^(к-1)
Так як вироби незалежні, то застосовуємо правило множення для незалежних подій
2. Нехай в урні є кулі білого та інших кольорів, тоді група повних подій є
Н1- немає куль білого кольору в урні
Н2- є одна куля білого кольору в урні
Н3- є дві кулі білого кольору в урні
Н4- всі кулі в урні білі
А- витягли білу кулю
Тоді
Р(Н1)=Р(Н2)=Р(Н3)=Р(Н4)=1/4
Р(А/Н1)=1/4
Р(А/Н2)=2/4
Р(А/Н3)=3/4
Р(А/Н4)=4/4
За формулою повної ймовірності
Р(А)= Р(А/Н1)×Р(Н1) + Р(А/Н2)×Р(Н2) + Р(А/Н3)×Р(Н3) + Р(А/Н4)×Р(Н4)=1/4(1/4+2/4+3/4+1)=0.625
3. Ймовірніст порадити купити акції р=0.9
х-кількість брокерів, які порадили купити акції , тоді
Р(х>=4)=С(5,4)р^4×(1-р) + С(5,5)р^5= 5×0.9^4×0.1+0.9^5=0.91854