1) (x-0,7)(0,7+x)+5-x²=x²-0,7²+5-x²=25-0,49=24,51 - постоянная величина и не зависит от переменной 2) (5-0,9x)(0,9x+5)-10+0,81x²=(5-0,9х)(5+0,9х)-10+0,81х²= =25-0,81х²-10+0,81х²=15 - постоянная величина и не зависит от переменной 3) (x-0,2)*(0,2+x)+(4-x)(4+x)=(x-0,2)(x+0,2)+(4-x)(4+x)= =x²-0,04+16-x²=15,96 -постоянная величина и не зависит от переменной 4) (0,6-x)(x+0,6)-(2-x)(x+2)=(0,6-x)(0,6+x)-(2-x)(2+x)= =0,36-x²-(4-x²)=0,36-x²-4+x²=-3,64 -постоянная величина и не зависит от переменной
2) (5-0,9x)(0,9x+5)-10+0,81x²=(5-0,9х)(5+0,9х)-10+0,81х²=
=25-0,81х²-10+0,81х²=15 - постоянная величина и не зависит от переменной
3) (x-0,2)*(0,2+x)+(4-x)(4+x)=(x-0,2)(x+0,2)+(4-x)(4+x)=
=x²-0,04+16-x²=15,96 -постоянная величина и не зависит от переменной
4) (0,6-x)(x+0,6)-(2-x)(x+2)=(0,6-x)(0,6+x)-(2-x)(2+x)=
=0,36-x²-(4-x²)=0,36-x²-4+x²=-3,64 -постоянная величина и не зависит от переменной
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z