Найдите число, которое при делении на 5 и на 7 даёт
в остатках соответственно 1 и 5, а сумма полученных ча-
стных равна 32.
2) найдите число, которое при делении на 13 даёт в ос-
татке 10, при делении на 5 даёт в остатке 1, а сумма по-
лученных частных составляет одну четвёртую искомого
числа.
Работаем с квадратами, поэтому берем кубический многочлен.
Напишем систему уравнений
S = An^3 + Bn^2 + Cn + D
Где будем подставлять посчитанные результаты S и n от 0 до 4.
D = 0
A + B + C + D = 1
8A + 4B + 2C + D = 5
27A + 9B+ 3C + D = 14
далее
A + B + C = 1
8A + 4B + 2C = 5
27A + 9B + 3C = 14
вычтем первое уравнение помноженное на 2 из второго
и первое уравнение помноженное на 3 из третьего
A + B + C = 1
6A + 2B = 3
24A + 6B = 11
вычтем второе уравнение помноженное на 3 из третьего
A + B + C = 1
6A + 2B = 3
6A = 2
решая эту систему получим
A = 1/3
B = 1/2
C = 1/6
D = 0
подставляя найденные значения в самое верхнее выражение
получим
S = (1/3)n^3 + (1/2)n^2 + (1/6)n
это и есть искомая формула
(приведите ее к общему знаменателю, да разложите на множители)
Из формулы вс угла: a*sin(x) + b*cos(x) = sqrt(a^2+b^2)*sin(x+y), sin(y) = b/sqrt(a^2+b^2). cos(7x-pi/4) + sin (7x-pi/4) = sqrt(1^1+1^1)*sin(7x-pi/4+1/sqrt(1^1+1^1)), cos(7x-pi/4) + sin (7x-pi/4) = sqrt(2)*sin(7x-pi/4+1/sqrt(2)).