Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
х дней - требуется первой бригаде
у дней - второй бригаде
х-у=10
1/х + 1/у=1/12
.
х=10+у
12(у+х)=ху
.
х=10+у
12(у+10+у)=у(10+у)
.
х=10+у
24у+120=10у+у²
.
х=10+у
у² - 14у - 120=0
D/4=7²+120=169 (±13²)
у1=7-13= - 6 - не подходит решению
у2=7+13=20
.
у=20
х=10+у
.
у=20(дней) - потребуется второй бригаде
х=30(дней) - потребуется первой бригаде
или
1/х (часть) - делает первая бригада за 1 день
1/(х-10) (часть) - делает вторая за 1 день
1/12 (часть) - делают вместе за 1 день
.
1/х + 1/(х-10) =1/12
12(х-10+х)=х(х-10)
24х - 120=х² - 10х
х² - 34х+120=0
D/4=17²-120=169 (±13²)
х1=17-13=4 - не подходит решению
х2=17+13=30(дн.) - потребуется первой
30-10=20(дн.) - потребуется второй
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.