В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
summercik2009oziid6
summercik2009oziid6
23.01.2023 07:51 •  Алгебра

Найдите координаты точек пересечения функции y=-3/4×x-12c осью абсцисс с решением полным

Показать ответ
Ответ:
OtlicnikKZ1337
OtlicnikKZ1337
30.12.2020 07:59
Графики во вложении.
Все функции в условии, являются уравнениями чей график - обычная прямая. Так как они имеют вид:
y=ax+b- a угловой коэффициент,b точка пересечения прямой с осью у.

У каждой прямой b=0, следовательно, данные прямые пересекают ось у в начале координат.
А так же ось х в начале координат. Так как:
0=ax\\x=0

Это прямые, а значит:
D(y)=(-\infty,+\infty) - область определения.
E(y)=(-\infty,+\infty)- область значений.

Теперь, по отдельности строим каждый график:
1. 
y=3x

Здесь a=3 \Rightarrow 3\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in[0,+\infty)
f(x)\ \textless \ 0 \rightarrow x\in (-\infty,0)

2. 
y=-1,5x

Здесь  a=-1,5x \Rightarrow -1,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

3.
y=x

Здесь a=1 \Rightarrow 1\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

4.
y=-x

Здесь  a=-1x \Rightarrow -1\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

5.
y=2,5x

Здесь a=2,5\Rightarrow 2,5\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

6.
y=-4,5x

Здесь  a=-4,5x \Rightarrow -4,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
0,0(0 оценок)
Ответ:
kiska510
kiska510
08.03.2020 02:54
Обе части неравенства неотрицательны, можно возвести в квадрат.
(x^2 - 2x + a)^2 > 25
(x^2 - 2x + a - 5)(x^2 - 2x + a + 5) > 0
((x - 1)^2 + (a - 6))((x - 1)^2 + (a + 4)) > 0

У последнего неравенства не должно быть решений на отрезке [-1, 2].
Неравенство на деле зависит от (x - 1)^2 = t, поэтому необходимо и достаточно требования, что у неравенства относительно t:
(t + (a - 6))(t + (a + 4)) > 0
нет решений при t, принадлежащих отрезку [0, 4].

Функция в левой части - квадратный трёхчлен, притом старший коэффициент положителен. Понятно, что неотрицательные значения он принимает на промежутке [-4 - a, 6 - a]. Теперь всего-навсего остаётся найти, при каких a отрезок [0, 4] вложен в отрезок [-4 - a, 6 - a] (концы отрезков могут и совпадать).

-4 - a <= 0
6 - a >= 4

-4 <= a <= 2

целые решения: -4, -3, -2, -1, 0, 1, 2 - вроде 7 штук
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота