Чтобы построить прямую надо знать две точки принадлежащие этой прямой. Для этого одну координату задают произвольно, а вторую находят из уравнения данной прямой Прямая х+5у=7 проходит через точки (7;0) и (-8;3) пусть у=0 , тогда х=7 пусть х=-8, тогда -8+5у=7 ⇒ 5у=15 ⇒ у=3
Прямая х-4у=2 проходит через точки (2;0) и (-2;-1) у=0 х=2 х=-2 у=-1
Чтобы найти координаты точки пересечения решаем систему двух уравнений: х+5у=7 х-4у=2 Вычитаем из первого уравнения второе 9у=5 у=5/9 х=7-5у=7-(25/9)=38/9=4 целых 4/9
Область определения функции (ООФ) - значения, которые может принимать х, Область значений функции (множество значений) - значения, которые может принимать у. Например: у = 1/(16x² - 49) ООФ: 16х² - 49 ≠ 0 х² ≠ 49/16 x ≠ 7/4 x ≠ -7/4 => x∈(-∞; -7/4)U(-7/4; 7/4)U(7/4; ∞) Очевидно, что если знаменатель дроби не может равняться нулю, то и у ≠ 0: у ∈ (-∞; 0)U(0; ∞) - Область (множество) значений данной функции График функции очень любопытный...))) (см. рис.)
Прямая х+5у=7 проходит через точки (7;0) и (-8;3)
пусть у=0 , тогда х=7
пусть х=-8, тогда -8+5у=7 ⇒ 5у=15 ⇒ у=3
Прямая х-4у=2 проходит через точки (2;0) и (-2;-1)
у=0 х=2
х=-2 у=-1
Чтобы найти координаты точки пересечения решаем систему двух уравнений:
х+5у=7
х-4у=2
Вычитаем из первого уравнения второе
9у=5
у=5/9
х=7-5у=7-(25/9)=38/9=4 целых 4/9
Область значений функции (множество значений) - значения, которые может принимать у.
Например: у = 1/(16x² - 49)
ООФ: 16х² - 49 ≠ 0
х² ≠ 49/16
x ≠ 7/4 x ≠ -7/4 => x∈(-∞; -7/4)U(-7/4; 7/4)U(7/4; ∞)
Очевидно, что если знаменатель дроби не может равняться нулю,
то и у ≠ 0:
у ∈ (-∞; 0)U(0; ∞) - Область (множество) значений данной функции
График функции очень любопытный...))) (см. рис.)