Находим производную y'=3*x²+6*x-9=3*(x²+2*x-3)=3*(x-1)*(x+3). Приравнивая её к нулю, находим критические точки x1=1 и x2=-3. Если x<-3, то y'>0, поэтому на интервале (-∞;-3) функция возрастает. Если -3<x<1, то y'<0, поэтому на интервале (-3;1) функция убывает. Наконец, если x>1, то y'>0, поэтому на интервале (1;∞) функция возрастает. Отсюда следует, что точка x=-3 является максимума, а точка x=1 - точкой минимума. Наибольшее значение функции Ymax=y(-3)=29, а наименьшее Ymin=y(1)=-3. Однако так как точка x=-3 не принадлежит интервалу [-2;2], то её не рассматриваем. Сравниваем значения на концах интервала: y(-2)=24, y(2)=4. Поэтому Ymax=y(-2)=24, Ymin=y(1)=-3.
ответ: Ymax=24, Ymin=-3.
Объяснение:
Находим производную y'=3*x²+6*x-9=3*(x²+2*x-3)=3*(x-1)*(x+3). Приравнивая её к нулю, находим критические точки x1=1 и x2=-3. Если x<-3, то y'>0, поэтому на интервале (-∞;-3) функция возрастает. Если -3<x<1, то y'<0, поэтому на интервале (-3;1) функция убывает. Наконец, если x>1, то y'>0, поэтому на интервале (1;∞) функция возрастает. Отсюда следует, что точка x=-3 является максимума, а точка x=1 - точкой минимума. Наибольшее значение функции Ymax=y(-3)=29, а наименьшее Ymin=y(1)=-3. Однако так как точка x=-3 не принадлежит интервалу [-2;2], то её не рассматриваем. Сравниваем значения на концах интервала: y(-2)=24, y(2)=4. Поэтому Ymax=y(-2)=24, Ymin=y(1)=-3.