В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
vikhrovdavid
vikhrovdavid
05.04.2021 14:11 •  Алгебра

Найдите наибольшее значение выражения:
-13y^2-20yz-25z^2-24z-12

Показать ответ
Ответ:
Iskrmsndrxjdjjsd
Iskrmsndrxjdjjsd
04.10.2020 23:39

Попробуем повыделять полные квадраты:

-(13y^2+20yz+25z^2+24z+12)=-((y\sqrt{13})^2+2\cdot y\sqrt{13}\cdot \dfrac{10}{\sqrt{13}}z+\dfrac{100}{13}z^2-\\-\dfrac{100}{13}z^2+25z^2+24z+12)=-((y\sqrt{13}+\dfrac{10}{\sqrt{13}}z)^2+\dfrac{225}{13}z^2+24z+12)=\\=-((y\sqrt{13}+\dfrac{10}{\sqrt{13}}z)^2+(\dfrac{15}{\sqrt{13}}z)^2+2\cdot \dfrac{15}{\sqrt{13}}z\cdot \dfrac{4\sqrt{13}}{5}+\dfrac{208}{25}-\dfrac{208}{25}+12)=\\=-((y\sqrt{13}+\dfrac{10}{\sqrt{13}}z)^2+(\dfrac{15}{\sqrt{13}}z+\dfrac{4\sqrt{13}}{5})^2+\dfrac{92}{25})

Так как квадрат чего-либо всегда неотрицателен, выражение в скобках не меньше 92/25 = 3,68. Значит, максимально возможное значение всего выражения равно -3,68. Оно достигается, если каждый квадрат равен нулю. Посмотрим, возможна ли эта ситуация:

\dfrac{15}{\sqrt{13}}z+\dfrac{4\sqrt{13}}{5}=0\\z=-\dfrac{4\sqrt{13}}{5}\cdot \dfrac{\sqrt{13}}{15}=-\dfrac{52}{75}

y\sqrt{13}+\dfrac{10}{\sqrt{13}}z=y\sqrt{13}-\dfrac{8\sqrt{13}}{15}=0\\y=\dfrac{8}{15}

Раз существуют такие y и z, то максимальное значение достигается.

ответ: -3,68

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота