В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
AlexGrehova
AlexGrehova
28.04.2023 23:16 •  Алгебра

Найдите наибольшее значение выражения 3sin⁡α−4cos⁡α

Показать ответ
Ответ:
Snow241
Snow241
07.10.2020 16:17
Известно, что из формулы содержащего дополнительного угла исходное выражение равно: 3\sin \alpha -4\cos\alpha = 5\sin(\alpha -\arcsin \frac{4}{5} )

Синус принимает значения [-1;1] и оценивая в виде двойного неравенства, получим

                                     -1 \leq \sin(\alpha -\arcsin \frac{4}{5} ) \leq 1~~~ |\cdot 5\\ \\ -5 \leq 5\sin(\alpha -\arcsin \frac{4}{5} ) \leq 5

Из этого видно что наибольшее значение выражения равно 5.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота