В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
XTreams
XTreams
28.07.2021 22:12 •  Алгебра

Найдите наибольший объем правильной четырехугольной призмы,диагональ которой равна 8√3см

Показать ответ
Ответ:
darkishlord
darkishlord
07.10.2020 16:58
Пусть в основании лежит квадрат со стороной a, высота равна h. Тогда квадрат длины диагонали d вычисляется по формуле d^2 = 2a^2 + h^2, объём по формуле a^2 * h,

2a^2 + h^2 = (8*sqrt(3))^2
2a^2 + h^2 = 192
2a^2 = 192 - h^2
a^2 = (192 - h^2)/2

V(h) = (192 - h^2) * h / 2 = 96h - h^3 / 2

Нужно найти максимальное значение V, если h принимает значения из отрезка [0, 8sqrt(3)].

V'(h) = 96 - 3h^2 / 2 = 0
3h^3 = 192
h^2 = 64
h = 8

V'(h) > 0 при h < 8; V'(h) < 0 при h > 8, поэтому h = 8 — точка максимума.

Vmax = V(8) = (192 - 64) * 8 / 2 = 512
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота