1
Допустим, что одно из данных чисел равно х.
По условию задачи числа являются натуральными и последовательными, значит второе число будет равно х + 1.
Получаем следующее уравнение:
х * (х + 1) = 132,
х^2 + x = 132,
x^2 + x - 132 = 0.
Решим данное квадратное уравнение. Найдем дискриминант:
D = 1^2 - 4 * 1 * (-132),
D = 1 + 528,
D = 529, следовательно √529 = 23.
Таким образом получаем:
х = (- 1 - 23) / 2 = -12 и х = (-1 + 23) / 2 = 11.
По условию числа являются натуральными, значит будут иметь вид:
11 и 11 + 1 = 12.
ответ: 11 и 12.
2.
По теореме Виета.
х1=2+√3,х2, получим
х1+х2=2+√3+х2=4, отсюда х2=2-√3,
тогда с равно с=х1*х2=(2+√3)(2-√3)=2²-(√3)²=4-3=1
т. е уравнение имеет вид x2-4x+1=0 и с=1
Объяснение:
1)
a) x² - 6x + 5 = 0;
D = 16;
X1 = 5;
X2 = 1;
ответ: 5, 1
б) x² - 5x = 0;
x (x - 5) = 0;
X = 0 или x = 5;
ответ: 0, 5
в) 6x + x²- 7 = 0
x² + 6x - 7 = 0
D=6²-4*1*7=36-28=√8=2√2
x1 = -2√2
x2 = -4√2
ответ: -2√2, -4√2
г) 3x² - 48 = 0
3 (x² - 16) = 0
(x - 4) (x + 4) = 0
x1 = 4
x2 = -4
ответ: 4, -4
2)
S = x (x - 6) = 40
x² - 6x - 40=0
D = 36 + 160 = 196 = 14²
x₁ = (6 + 14) / 2 = 10
x₂ = (6 - 14) / 2 = -4
Длина = 10
Ширина = 10 - 6 = 4
3)
х² + рх - 18 = 0
81 - 9p - 18 = 0
-9p = -63
p = 7
x² + 7x - 18 = 0
x₁ = -9 x₂ = 2
4)
х1 + х2 = -b;
x1 * x2 = c
9 - 4 = 5 b = -5
9 * (-4) = 36 c = -36
х² - 5х - 36 = 0
1
Допустим, что одно из данных чисел равно х.
По условию задачи числа являются натуральными и последовательными, значит второе число будет равно х + 1.
Получаем следующее уравнение:
х * (х + 1) = 132,
х^2 + x = 132,
x^2 + x - 132 = 0.
Решим данное квадратное уравнение. Найдем дискриминант:
D = 1^2 - 4 * 1 * (-132),
D = 1 + 528,
D = 529, следовательно √529 = 23.
Таким образом получаем:
х = (- 1 - 23) / 2 = -12 и х = (-1 + 23) / 2 = 11.
По условию числа являются натуральными, значит будут иметь вид:
11 и 11 + 1 = 12.
ответ: 11 и 12.
2.
По теореме Виета.
х1=2+√3,х2, получим
х1+х2=2+√3+х2=4, отсюда х2=2-√3,
тогда с равно с=х1*х2=(2+√3)(2-√3)=2²-(√3)²=4-3=1
т. е уравнение имеет вид x2-4x+1=0 и с=1
Объяснение:
1)
a) x² - 6x + 5 = 0;
D = 16;
X1 = 5;
X2 = 1;
ответ: 5, 1
б) x² - 5x = 0;
x (x - 5) = 0;
X = 0 или x = 5;
ответ: 0, 5
в) 6x + x²- 7 = 0
x² + 6x - 7 = 0
D=6²-4*1*7=36-28=√8=2√2
x1 = -2√2
x2 = -4√2
ответ: -2√2, -4√2
г) 3x² - 48 = 0
3 (x² - 16) = 0
(x - 4) (x + 4) = 0
x1 = 4
x2 = -4
ответ: 4, -4
2)
S = x (x - 6) = 40
x² - 6x - 40=0
D = 36 + 160 = 196 = 14²
x₁ = (6 + 14) / 2 = 10
x₂ = (6 - 14) / 2 = -4
Длина = 10
Ширина = 10 - 6 = 4
3)
х² + рх - 18 = 0
81 - 9p - 18 = 0
-9p = -63
p = 7
x² + 7x - 18 = 0
x₁ = -9 x₂ = 2
4)
х1 + х2 = -b;
x1 * x2 = c
9 - 4 = 5 b = -5
9 * (-4) = 36 c = -36
х² - 5х - 36 = 0