1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0
2) Найдем нули числителя и знаменателя:
Числитель: -Все скобки приравниваем к нулю:
х∧2+2х+1=0
D<0, f(x)>0 х-любое число
x-3=0
x=3
x+2=0
x=-2
Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности),
Знаменатель: х∧2+2х-3 не равно 0
D=16
x=-3
x=1
Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности)
Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
Объяснение:
Александр упаковал 400 больших коробок и израсходовал два рулона скотча полностью, а от третьего осталось ровно две пятых,то есть:
2+(1-(2/5))=2+(3/5)=2³/₅ (рулона).
65 см=0,65 м 55 см=0,55 м.
Найдём количество метров в одном рулоне:
Количество метров в трёх рулонах скотча: 100*3=300. ⇒
Если на каждую коробку нужно по 0, 55 м скотча, то на 560 одинаковых коробок ему нужно:
560*0,55=308 (м) ⇒
ответ: трёх целых таких рулонов скотча ему не хватит.