17q=140-5pИз p=28-17n следует что n не больше 1 в противном случае p отрицательное17и5 взаимно простые значитПри таком раскладе очевидно, что если q u p простые, значения q должны быть кратны 5-ти. Только что написал программу для данного уравнения через Турбо Паскаль.)28-p=17n => p=28-17nn=0 => p=28 — не простое17q=5(28-p)n=1 => p=11 подходит, подставим n=1 в q=5n и найдем q=5q=5nответ: 11 , 5Если q=5; p=(140-85)/5=11; — и это единственная пара простых чисел — решений данного равенства.5p+17q=140
Пусть мальчиков m, девочек d. Тогда 100% * m + 100% * d = 130% * m + 50% * d 30 % m = 50% d 3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство. 3 * 10M = 5d 6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское: 6M = 6D M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. ответ при этом получился бы быстрее.
100% * m + 100% * d = 130% * m + 50% * d
30 % m = 50% d
3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство.
3 * 10M = 5d
6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское:
6M = 6D
M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. ответ при этом получился бы быстрее.