В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Nagornjk
Nagornjk
08.02.2022 21:44 •  Алгебра

Найдите площадь параллелограмма со сторонами а и в , если острый угол между диагоналями ровняется γ( вроде гамма)

Показать ответ
Ответ:
mooziviycom
mooziviycom
14.08.2020 11:21
Пусть a>b. Тогда обозначим половину меньшей диагонали за x, половину большей - за y, и по теореме косинусов получим:
a^2 = x^2+y^2+2xy\cos\gamma\\ b^2 = x^2+y^2-2xy\cos\gamma\\
Вычитая из первого уравнения второе, имеем:
a^2 - b^2=4xy\cos\gamma\\ 2xy = \frac{a^2-b^2}{2\cos\gamma}
2xy - это половин произведения диагоналей. Осталось умножить её на синус угла между диагоналями, и мы получим площадь:
S = \frac{a^2-b^2}{2\cos\gamma} \cdot sin \gamma = \frac{1}{2}(a^2-b^2)\mathrm{tg}\gamma
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота