Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
Решение задачи проведём в три этапа.
Первый этап. Составление математической модели.
Обозначим буквой x число книг на второй полке, тогда на первой полке 2x книг, а на третьей полке — (2x−15) книг.
Найдём общее количество книг на трёх полках — x+2x+2x−15 — которое по условию задачи равно 95 книгам.
Получим уравнение:
x+2x+2x−15=95.
Это уравнение — математическая модель задачи.
Второй этап. Работа с составленной математической моделью.
Решаем уравнение:
x+2x+2x−15=95;5x−15=95;5x=110;x=22.
Третий этап. ответ на вопрос задачи.
Найдя x, узнали, сколько книг на второй полке.
Из условия задачи известно, что на первой полке в два раза больше книг, чем на второй, т. е. книг 44.
На третьей полке на 15 книг меньше, чем на первой, т. е. книг 29.
на первой полке книг—44.
На второй полке книг—22.
На третьей полке книг—29.
Объяснение:
Я уже этот тест сделал поэтому это правильно
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.