1)а) f (х) = х + 2; F(x) =x²/2 + 2x + C б) f (х) = х^3 – 2х + 1; F(X) = x^4/4 -2x²/2 + x + C = x^4/4 - x² + x + X в) f (х) = х^2 + соs х F(X) = x³/3 + Sinx + C 2. Найдите ту первообразную функции, график которой проходит через начало координат (0;0) f (х) = 2х^2 – 3х + 1. F(x) = 2x³/3 - 3x²/2 + x + C 0 = 0 + C C = 0 ответ: F(x) = 2x³/3 - 3x²/2 + x 3. Пусть F(х) – первообразная функции f (х) = х^2 – х . f'(x) = 2x -1 2x -1 = 0 x = 1/2 это точка минимума. х∈( -∞; 1+2) - это промежуток убывания f(x) х∈(1/2;+∞) - это промежуток возрастания.
ответ:
случайная величина х - число извлеченных шаров,
принимает значения 1,2,3,4 с вероятностями
р (1)= 2/5=0,4
р (2)= 3/5 *2/4=0,3
р (3)= 3/5 *2/4 *2/3=0,2
р (4)= 3/5 *2/4 *1/3 *2/2=0,1
проверка: 0,4+0,3+0,2+0,1=1
и строишь таблицу распределения
1-я строка - значения х — 1,2,3,4
2-я строка — соответствующие вероятности
m(х) =0,4*1+ 0,3*2+ 0,2*3+ 0,1*4=2
m(x^2)=0,4*1 +0,3*4+ 0,2*9+ 0,1*16=0,4+ 1,2+ 1,8+ 1,6=5
d(х) =m(x^2)-(m(=5-4=1
буковка там какая-то это сигма - средн. квадр. отклонение
σ=√d=1
функция распределения ступенчатая
f(х) =0 при х≤1
f(х) =0,4 при 1
f(x)=0,7 при 2
f(x)=0,9 при 3
f(x)=1 при х> 4 (0,9+0,1=1)
вероятность р (х> 2) найдешь сама и проверь вычисления
F(x) =x²/2 + 2x + C
б) f (х) = х^3 – 2х + 1;
F(X) = x^4/4 -2x²/2 + x + C = x^4/4 - x² + x + X
в) f (х) = х^2 + соs х
F(X) = x³/3 + Sinx + C
2. Найдите ту первообразную функции, график которой проходит через начало координат (0;0)
f (х) = 2х^2 – 3х + 1.
F(x) = 2x³/3 - 3x²/2 + x + C
0 = 0 + C
C = 0
ответ: F(x) = 2x³/3 - 3x²/2 + x
3. Пусть F(х) – первообразная функции f (х) = х^2 – х .
f'(x) = 2x -1
2x -1 = 0
x = 1/2
это точка минимума.
х∈( -∞; 1+2) - это промежуток убывания f(x)
х∈(1/2;+∞) - это промежуток возрастания.