Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
1) Область определения функции - все действительные числа, так как при а>0 под корнем находится положительное число, следовательно из него можно извлечь квадратный корень. График функции непрерывен на всей области определения. Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода. 2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная 3)
При а>0 это уравнение не имеет решений, значит нулей у функции нет. Так как квадратный корень принимает только неотрицательные значения, то функция на всей области определения положительна. 4)
Производная равна нулю только в точке х=0 - это точка минимума, так как производная меняет свой знак с "-" на "+". Следовательно, при х<0, то есть при отрицательной производной, функция убывает, при х>0 - возрастает, так как производная больше нуля. Минимум функции находим как значение самой функции в точке минимума:
5)
Вторая производная при любых а>0 и х положительна, значит функция на всей области определения вогнута и у нее нет точек перегиба.
1)
Функция не является непрерывной, так как она не она не определена при . Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода. 2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная 3) Нули функции:
Так как квадратный корень принимает только неотрицательные значения, то функция в остальных точках области определения, то есть при положительна. 4)
Производная равна нулю только в точке х=0, однако эта точка попадает в область определения функции только при а=0. В общем случае, при , то есть при отрицательной производной, функция убывает, при - возрастает, так как производная больше нуля. Точки минимума совпадают с нулями функции и соответственно сами минимумы равны нулю. 5)
Вторая производная при любых а>0 и х отрицательна, значит функция на всей области определения выпукла (в знаменателе стоит выражение, которое в соответствии с областью определения не может быть отрицательным числом), точек перегиба у функции нет.
9,90,99
Объяснение:
Сумма бесконечно убывающей геометрической прогрессии:
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
Область определения функции - все действительные числа, так как при а>0 под корнем находится положительное число, следовательно из него можно извлечь квадратный корень. График функции непрерывен на всей области определения. Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода.
2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная
3)
При а>0 это уравнение не имеет решений, значит нулей у функции нет. Так как квадратный корень принимает только неотрицательные значения, то функция на всей области определения положительна.
4)
Производная равна нулю только в точке х=0 - это точка минимума, так как производная меняет свой знак с "-" на "+". Следовательно, при х<0, то есть при отрицательной производной, функция убывает, при х>0 - возрастает, так как производная больше нуля. Минимум функции находим как значение самой функции в точке минимума:
5)
Вторая производная при любых а>0 и х положительна, значит функция на всей области определения вогнута и у нее нет точек перегиба.
1)
Функция не является непрерывной, так как она не она не определена при . Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода.
2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная
3)
Нули функции:
Так как квадратный корень принимает только неотрицательные значения, то функция в остальных точках области определения, то есть при положительна.
4)
Производная равна нулю только в точке х=0, однако эта точка попадает в область определения функции только при а=0. В общем случае, при , то есть при отрицательной производной, функция убывает, при - возрастает, так как производная больше нуля. Точки минимума совпадают с нулями функции и соответственно сами минимумы равны нулю.
5)
Вторая производная при любых а>0 и х отрицательна, значит функция на всей области определения выпукла (в знаменателе стоит выражение, которое в соответствии с областью определения не может быть отрицательным числом), точек перегиба у функции нет.