В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Tina19977
Tina19977
28.05.2023 15:31 •  Алгебра

Найдите угол, образованный касательной к графику функции y=g(x) с положительным направлением оси абсцисс в точке с абсциссой x0:

Показать ответ
Ответ:
kafdiana9
kafdiana9
04.10.2020 01:12
Тангенс угла наклона касательной к положительному направлению оси х численно равен значению производной в точке касания:
f(x)= \frac{2}{3} \sqrt{4-3x} \\\ f'(x)= \frac{2}{3} \cdot \frac{1}{2\sqrt{4-3x}} \cdot (4-3x)'=\frac{1}{3\sqrt{4-3x}} \cdot (-3)=-\frac{1}{\sqrt{4-3x}} \\\ f'(x_0)=f'(\frac{1}{3} ) =-\frac{1}{\sqrt{4-3\cdot \frac{1}{3} }} = -\frac{1}{\sqrt{4-1}} =-\frac{1}{\sqrt{3}} =- \frac{ \sqrt{3} }{3} \\\ \mathrm{tg} \alpha =- \frac{ \sqrt{3} }{3}
\\\
 \alpha =- \frac{ \pi }{6} + \pi n, \ n\in Z
Необходимо найти наименьшее положительное значение угла, таким значением является угол при n=1: \alpha = \frac{5 \pi }{6} =150^\circ
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота