Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
1) функция принимает мах (или мин) значение либо на концах отрезка, либо в точках, где производная равна 0.
f(2)=6-2=4
f(3)=6-3=3
f `(x)=-1 не равно 0, выбираем из 2-х точек наиб (или наим) - это мах=4, мин=3
или f `(x)=4x-6, 4x-6=0, 4x=6,x=1,5
f(1,5)=2* (1,5^2)-6*1,5+2=6,5
f(2)=2* 2^2 - 6*2 +2=-2
f(3)=2* 3^2 - 6*3+2=2
выбираем из значений 6,5 -2 2 - наиб=6,5 наим=-2
2) Для нахождения экстремума найти производную и приравнять ее к нулю:
y `=3x^2, 3x^2=0, x=0
+ +
0x
здесь производная при переходе через точку 0 не меняет знак, следовательно, 0 не является экстремумом, а просто стационарная точка. А если при переходе через точку производная меняет знак с + на - ,то получаем точку мах; с - на + -точка мин
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4
1) функция принимает мах (или мин) значение либо на концах отрезка, либо в точках, где производная равна 0.
f(2)=6-2=4
f(3)=6-3=3
f `(x)=-1 не равно 0, выбираем из 2-х точек наиб (или наим) - это мах=4, мин=3
или f `(x)=4x-6, 4x-6=0, 4x=6,x=1,5
f(1,5)=2* (1,5^2)-6*1,5+2=6,5
f(2)=2* 2^2 - 6*2 +2=-2
f(3)=2* 3^2 - 6*3+2=2
выбираем из значений 6,5 -2 2 - наиб=6,5 наим=-2
2) Для нахождения экстремума найти производную и приравнять ее к нулю:
y `=3x^2, 3x^2=0, x=0
+ +
0x
здесь производная при переходе через точку 0 не меняет знак, следовательно, 0 не является экстремумом, а просто стационарная точка. А если при переходе через точку производная меняет знак с + на - ,то получаем точку мах; с - на + -точка мин