№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
Объяснение:
1) |4-x|<6
__x<4__x=4__x>4__
+ 0 - 4-x
x<4
4-x<6⇒-x<6-4⇒-x<2⇒x>-2 x∈(-2;4]
x>4
-(4-x)<6⇒-4+x<6⇒x<6+4⇒x<10 x∈(4;10)
x∈(-2;10) целых решений : -1,0,1,2,3,4,5,6,7,8,9=11
2) 2|x+3|≤|x-1|⇒2|x+3|-|x-1|≤0
x<-3x=-3-3≤x<1x=1x≥1
- 0 + + x+3
- - 0 + x-1
x<-3
2(-x-3)-(-x+1)≤0⇒-2x-6+x-1≤0⇒-x-7≤0⇒-x≤7⇒x≥-7 x∈[-7;-3)
-3≤x<1
2(x+3)-(-x+1)≤0⇒2x+6+x-1≤0⇒3x≤-5⇒x≤-5/3 x∈[-3;-5/3]
x≥1
2x+6-(x-1)≤0⇒2x+6-x+1≤0⇒x≤-7 x∈∅
x∈[-7;-3)U[-3;-5/3] целых решений: -7,-6,-5,-4,-3,-2=6
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
Объяснение:
1) |4-x|<6
__x<4__x=4__x>4__
+ 0 - 4-x
x<4
4-x<6⇒-x<6-4⇒-x<2⇒x>-2 x∈(-2;4]
x>4
-(4-x)<6⇒-4+x<6⇒x<6+4⇒x<10 x∈(4;10)
x∈(-2;10) целых решений : -1,0,1,2,3,4,5,6,7,8,9=11
2) 2|x+3|≤|x-1|⇒2|x+3|-|x-1|≤0
x<-3x=-3-3≤x<1x=1x≥1
- 0 + + x+3
- - 0 + x-1
x<-3
2(-x-3)-(-x+1)≤0⇒-2x-6+x-1≤0⇒-x-7≤0⇒-x≤7⇒x≥-7 x∈[-7;-3)
-3≤x<1
2(x+3)-(-x+1)≤0⇒2x+6+x-1≤0⇒3x≤-5⇒x≤-5/3 x∈[-3;-5/3]
x≥1
2x+6-(x-1)≤0⇒2x+6-x+1≤0⇒x≤-7 x∈∅
x∈[-7;-3)U[-3;-5/3] целых решений: -7,-6,-5,-4,-3,-2=6