Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю. Находим нуль числителя. x^2-4x-21 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-4)^2-4*1*(-21)=16-4*(-21)=16-(-4*21)=16-(-84)=16+84=100;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√100-(-4))/(2*1)=(10-(-4))/2=(10+4)/2=14/2=7;x₂=(-√100-(-4))/(2*1)=(-10-(-4))/2=(-10+4)/2=-6/2=-3.
Исходное уравнение можно представить дробью, в которой числитель разложен на множители:
Значит, если с примет значение или -7, или 3, то останется один корень.
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
Находим нуль числителя.
x^2-4x-21 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-4)^2-4*1*(-21)=16-4*(-21)=16-(-4*21)=16-(-84)=16+84=100;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√100-(-4))/(2*1)=(10-(-4))/2=(10+4)/2=14/2=7;x₂=(-√100-(-4))/(2*1)=(-10-(-4))/2=(-10+4)/2=-6/2=-3.
Исходное уравнение можно представить дробью, в которой числитель разложен на множители:
Значит, если с примет значение или -7, или 3, то останется один корень.
9,90,99
Объяснение:
Сумма бесконечно убывающей геометрической прогрессии:
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).