По условию имеем: a₁+a₅=26 a₂*a₄=160 Распишем 2й, 4й и 5й члены прогрессии через a₁: a₂=a₁+d a₄=a₁+3d a₅=a₁+4d Выполним подстановку в первое равенство: a₁+(a₁+4d)=26 2a₁+4d=26 упростим, т.е. разделим обе части равенства на 2: a₁+2d=13 Далее, выполним подстановку во второе равенство: (a₁+d)*(a₁+3d)=160 Для сокращения расчетов во второй скобке распишем выражение: (a₁+d)*((a₁+2d)+d)=160 Из первого равенства было получено, что a₁+2d=13. Подставим это значение во вторую скобку, получим: (a₁+d)*(13+d)=160 Выразим a₁ из первого равенства: a₁=13-2d и подставим в последнее равенство: (13-2d+d)*(13+d)=160 (13-d)(13+d)=160 Произведение в левой части равенства свернем по формуле разности квадратов:
13²-d²=160
169-d²=160
d²=9
d=3
a₁=13-2d
a₁=13-2*3
a₁=13-6
a₁=7
Далее по формуле суммы первых n членов прогрессии находим:
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
По условию имеем:
a₁+a₅=26
a₂*a₄=160
Распишем 2й, 4й и 5й члены прогрессии через a₁:
a₂=a₁+d
a₄=a₁+3d
a₅=a₁+4d
Выполним подстановку в первое равенство:
a₁+(a₁+4d)=26
2a₁+4d=26
упростим, т.е. разделим обе части равенства на 2:
a₁+2d=13
Далее, выполним подстановку во второе равенство:
(a₁+d)*(a₁+3d)=160
Для сокращения расчетов во второй скобке распишем выражение:
(a₁+d)*((a₁+2d)+d)=160
Из первого равенства было получено, что a₁+2d=13. Подставим это значение во вторую скобку, получим:
(a₁+d)*(13+d)=160
Выразим a₁ из первого равенства:
a₁=13-2d и подставим в последнее равенство:
(13-2d+d)*(13+d)=160
(13-d)(13+d)=160
Произведение в левой части равенства свернем по формуле разности квадратов:
13²-d²=160
169-d²=160
d²=9
d=3
a₁=13-2d
a₁=13-2*3
a₁=13-6
a₁=7
Далее по формуле суммы первых n членов прогрессии находим:
Sn=(2*a₁+(n-1)*d)/2*n
S₆=(2*7+5*3)/2*6
S₆=(14+15)/2*6
S₆=29/2*6
S₆=29*3
S₆=87
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.