Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
f'(x) = 3x² +12x
3x² +12x = 0
x(3x +12) = 0
x = 0 или 3х +12 = 0
х = - 4
б)f(x)=2Sinx-x
f'(x) = 2Cosx -1
2Cosx -1 = 0
Cosx = 1/2
x = +-π/3 + 2πk, k ∈Z
2.Найдите промежутки возрастания и убывания функции:
f(x)=x^3-4x^2+5x-1
f'(x) = 3x² - 8x +5
3x² -8x +5 = 0
x₁ = 5/3, x₂=1
-∞ 1 5/3 +∞
+ - + это знаки 3x² -8x +5
при х ∈(-∞;1)∪(5/3; +∞) функция возрастает
при х ∈(1; 5/3) функция убывает
3.Найдите точки экстремума: f(x)= x^2-3/x-2
f'(x) = (2x(x -2) - x²)/(х-2)² = (2х² - 4х -х²)/(х -2)² = (х² -4х)/(х -2)²
(х² -4х)/(х -2)²= 0, ⇒ (х² -4х) = 0 , х₁ = 0, х₂ = 4
(х -2)²≠ 0, х≠2
-∞ 0 2 4 +∞
+ - - + это знаки (х² -4х)/(х -2)²
х = 0 - это точка максимума; х = 4 - это точка минимума , х = 2 - точка разрыва
4. Докажите что функция g(x) на множестве R является: возрастающей если g(x)=2x^5+4x^3+3x-7
g'(x) = 10x⁴ + 12x² + 3
эта производная при любом х положительна, а это значит, что данная функция возрастающая
График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12).
Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).