Раз по реке она шла меньше времени при большем расстоянии, значит явно шла по течению. Пусть её собственная скорость V, время пути по реке t, тогда верны следующие соотношения(не забудем перевести минуты в часы): 36 = (V+2)*t, 35 = V * (t+1/20) Раскрываем скобки: 36 = Vt+2t 35=Vt+V/20 Вычитаем из второго уравнения первое: 1 = V/20 - 2t Выражаем скорость: V/20 = 1 + 2t V = 20 + 40 t Подставим это соотношение, например, в первое уравнение: 36=(20+40t+2)t 36 = 40 t^2 + 22 t 40 t^2 + 22 t - 36 = 0 Сокращаем: 20 t ^2 + 11 t - 18 = 0 Решаем квадратное уравнение: D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо) t = (-11+-(39,5)) / 40 = {-1,25; 0,7} Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости: V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч. Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
Тут писать дофига, но делается всё одинаково. Ты раскрываешь правую скобку по формуле квадрата суммы/разности и переносишь в левую часть. У тебя получается нормальное квадратное уравнение, в котором ты ищешь дискриминант и получаешь корни. Твои корни - это те значения, в которых твоё неравенство равно нулю. У тебя в каждом случае коэффициент при X^2 будет положительным, то-есть ветки параболы направлены вверх. Тебе нужен будет промежуток от минус бесконечности до меньшего корня (включительно или не включительно зависит от знака неравенства) и от большего корня (включительно или не включительно зависит от знака неравенства) до плюс бесконечности если тебе нужно больше нуля и от меньшего до большего корня (включительно или не включительно зависит от знака неравенства) если тебе нужно меньше нуля. Этого хватит? Как делается понятно или привести пример в комментариях под решением?
36 = (V+2)*t,
35 = V * (t+1/20)
Раскрываем скобки:
36 = Vt+2t
35=Vt+V/20
Вычитаем из второго уравнения первое:
1 = V/20 - 2t
Выражаем скорость:
V/20 = 1 + 2t
V = 20 + 40 t
Подставим это соотношение, например, в первое уравнение:
36=(20+40t+2)t
36 = 40 t^2 + 22 t
40 t^2 + 22 t - 36 = 0
Сокращаем:
20 t ^2 + 11 t - 18 = 0
Решаем квадратное уравнение:
D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо)
t = (-11+-(39,5)) / 40 = {-1,25; 0,7}
Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости:
V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч.
Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
Ниже
Объяснение:
Тут писать дофига, но делается всё одинаково. Ты раскрываешь правую скобку по формуле квадрата суммы/разности и переносишь в левую часть. У тебя получается нормальное квадратное уравнение, в котором ты ищешь дискриминант и получаешь корни. Твои корни - это те значения, в которых твоё неравенство равно нулю. У тебя в каждом случае коэффициент при X^2 будет положительным, то-есть ветки параболы направлены вверх. Тебе нужен будет промежуток от минус бесконечности до меньшего корня (включительно или не включительно зависит от знака неравенства) и от большего корня (включительно или не включительно зависит от знака неравенства) до плюс бесконечности если тебе нужно больше нуля и от меньшего до большего корня (включительно или не включительно зависит от знака неравенства) если тебе нужно меньше нуля. Этого хватит? Как делается понятно или привести пример в комментариях под решением?