Найти функцию дохода Y = Y(t), если известно, что величина потребления задаётся функцией C = 2t , коэффициент капиталоёмкости прироста дохода b =1/2, Y(0) = 2. Линейное неоднородное уравнение первого порядка решить методом Лагранжа (или методом вариации постоянных).
Пусть х грамм масса одного вещества, а у грамм второго. Так как масса смеси, состоящей из двух вещество равна 900г, получим первое уравнение: х + у = 900. Тогда после того, как из этой смеси взяли первого вещества и 70% второго, в ней осталось первого вещества на 18г меньше, чем второго, получим следующее уравнение: (у - 70%у) - (х - 5/6х) = 18.
Необходимо найти остаток смеси х и остаток смеси у.
Найдём значение "х" и "у".
(у - 70%у) - (х - 5/6х) = 18 ;
100% - 70 % = 30 %;
Преобразуем уравнение:
30%у - 1/6х = 18;
3/10у - 1/6х = 18;
Найдём общий знаменатель:
3/10у * 6 - 1/6х * 10 = 18 * 60;
18/60у - 10/60х = 1080/60;
Сокращаем дроби:
18у - 10х = 1080;
10х = 18у - 1080;
Сокращаем на 10:
х = 1,8у - 108;
Теперь подставим значение х в первое уравнение, получим:
900 = х + у;
х = 900 - у;
х = 1,8у - 108;
900 - у = 1,8у - 108;
-2,8у = - 1008;
Упрощаем выражение:
-2,8у * (-1) = - 1008 * (-1);
2,8у = 1008;
у = 360 грамм;
х = 540 грамм;
Найдём остаток от "х" и "у".
у - 70%у = 0,3у = 0,3 * 360 = 108 грамм (столько осталось смеси у);
х - 5/6х = 1/6х = 1/6 * 540 = 90 грамм (столько осталось смеси х) ;
Проверяем:
После того, как из смесей выделили определенное количество, смесь у осталось на 18 грамм больше, чем смеси х.
Из этого следует:
(у - 70%у) - (х - 5/6х) = 18;
Подставляем значения:
108 - 90 = 18 ;
18 = 18 (Значения найдены верно);
ответ: Первого вещества осталось 90 грамм, а второго вещества осталось 108 грамм.
Объяснение:
При одном включённом эскалаторе за минуту заполняется 1/12 зала. При двух включённых эскалаторах за минуту заполняется 1/30 зала. Далее можно рассуждать по-разному.
Первый . Разница 1/12 – 1/30 = 1/20 показывает, какую часть зала опустошает за минуту один эскалатор. Когда включат третий эскалатор, толпа начнёт убывать со скоростью 1/20 – 1/30 = 1/60 зала в минуту. Следовательно, зал освободится через час.
Второй . Скорость v2 заполнения зала при двух включенных эскалаторах равна среднему арифметическому скоростей v1 и v3 заполнения при одном и трёх включенных эскалаторах. Поэтому v3 = 2v2 – v1 = 2·1/30 – 1/12 = – 1/60, то есть освобождается 1/60 зала в минуту.
ответ
За час.