Сын мог бы выполнить один всю работу за 60 дней, а отец за 15 дней
Объяснение:
Весь объём работы принимаем за 1 (единицу)
Пусть сын один может выполнить всю работу за х дней, а отец за у дней. Планировалось, что работая вместе, отец и сын смогут выполнить всю работу за 12 дней, значит, за 1 день они сделают 1/12 работы. Составим первое уравнение:
Сын работал 8 дней и за 8 дней сделал 8/х часть работы. Отец работал 8+5 =13 дней и за 13 дней сделал 13/у часть работы. Фактически вместе они выполнили весь объём работы = 1. Составляем второе уравнение:
Решаем систему уравнений:
Итак,сын мог бы выполнить один всю работу за 60 дней, а отец за 15 дней.
Пусть x и y - вклады на первый и второй счёт соответственно. Причём y=15000-x.
Тогда через год суммы вкладов увеличились на 0.07*x и 0.1*y соответственно. Причём 0.07*x + 0.1*y = 12000.
Подставим:
0.07*x + 0.1*y = 12000
0.07*x + 0.1*(15000-x) = 12000
1500-0.03x=12000
0.03x=10500
x=350000.
Тогда y = 15000-x = -335000.
Пояснение:
Деньги можно не только вкладывать, но и брать в кредит у банка. По условиям задачи величина процентных денег слишком велика, чтобы получить её за год с маленькой суммы (15000) и низких процентов(7 и 10). Задача имела бы натуральное решение, либо если бы сумма вкладов была меньше, либо если бы проценты были больше, раз в 10.
Сын мог бы выполнить один всю работу за 60 дней, а отец за 15 дней
Объяснение:
Весь объём работы принимаем за 1 (единицу)
Пусть сын один может выполнить всю работу за х дней, а отец за у дней. Планировалось, что работая вместе, отец и сын смогут выполнить всю работу за 12 дней, значит, за 1 день они сделают 1/12 работы. Составим первое уравнение:
Сын работал 8 дней и за 8 дней сделал 8/х часть работы. Отец работал 8+5 =13 дней и за 13 дней сделал 13/у часть работы. Фактически вместе они выполнили весь объём работы = 1. Составляем второе уравнение:
Решаем систему уравнений:
Итак,сын мог бы выполнить один всю работу за 60 дней, а отец за 15 дней.
350000 и -335000 соответственно.
Объяснение:
Пусть x и y - вклады на первый и второй счёт соответственно. Причём y=15000-x.
Тогда через год суммы вкладов увеличились на 0.07*x и 0.1*y соответственно. Причём 0.07*x + 0.1*y = 12000.
Подставим:
0.07*x + 0.1*y = 12000
0.07*x + 0.1*(15000-x) = 12000
1500-0.03x=12000
0.03x=10500
x=350000.
Тогда y = 15000-x = -335000.
Пояснение:
Деньги можно не только вкладывать, но и брать в кредит у банка. По условиям задачи величина процентных денег слишком велика, чтобы получить её за год с маленькой суммы (15000) и низких процентов(7 и 10). Задача имела бы натуральное решение, либо если бы сумма вкладов была меньше, либо если бы проценты были больше, раз в 10.