В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
IamPrincess5
IamPrincess5
17.01.2023 00:41 •  Алгебра

Найти наибольшее значение функции y=2cosx-cos2x на отрезке [0; п]

Показать ответ
Ответ:
kinzya
kinzya
01.10.2020 20:15
Вычислим первую производную функции
     y'=(2\cos x-\cos 2x)'=-2\sin x+2\sin 2x

y'=0;~~~~~ -2\sin x+2\sin 2x=0\\ \\ -2\sin x+4\sin x\cos x=0\\ \\ -2\sin x(1-2\cos x)=0

Произведение равно нулю, если хотя бы один из множителей равен нулю.

\left[\begin{array}{ccc}\sin x=0\\\cos x=0.5\end{array}\right~~~~\Rightarrow~~~~ \left[\begin{array}{ccc}x_1= \pi k,k \in \mathbb{Z}\\ \\ x_2=\pm \frac{\pi}{3}+2 \pi n,n \in \mathbb{Z} \end{array}\right

Теперь отберем корни, принадлежащих [0;π].

k=0;~~~~ x=0

n=0;~~~~ x= \frac{\pi}{3}

Вычислим наибольшее значение функции на концах отрезка

y(0)=2\cos 0-\cos 0=2-1=1~~~~~ \\ \\ y( \pi )=2\cos \pi -\cos2 \pi =-2-1=-3

y(\frac{\pi}{3} )=2\cos\frac{\pi}{3} -\cos\frac{2\pi}{3} =2\cdot \frac{1}{2} +\frac{1}{2} =1.5~~~~~-\max
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота