Пусть скорость пешехода равна х км/час, тогда скорость велосипедиста (х+16) км/ч. Отправляются навстречу друг другу одновременно. Встречаются через 4 часа. Пешеход делал в пути получасовую остановку. Значит шел до встречи 4-0,5=3,5 часа, велосипедист до встречи ехал 4 час.
Итак, путь пешехода 3,5х км, а путь велосипедиста 4(х+16) км. Сумма по условию 94. Составляем уравнение:
4(x+16)+3,5x=94;
4x+64+3,5x=94;
7,5x=30;
x=30:7,5;
x=300:75
x=4.-скорость пешехода;значит скорость велосипедиста равна 16+4=20
Пусть скорость пешехода равна х км/час, тогда скорость велосипедиста (х+16) км/ч. Отправляются навстречу друг другу одновременно. Встречаются через 4 часа. Пешеход делал в пути получасовую остановку. Значит шел до встречи 4-0,5=3,5 часа, велосипедист до встречи ехал 4 час.
Итак, путь пешехода 3,5х км, а путь велосипедиста 4(х+16) км. Сумма по условию 94. Составляем уравнение:
4(x+16)+3,5x=94;
4x+64+3,5x=94;
7,5x=30;
x=30:7,5;
x=300:75
x=4.-скорость пешехода;значит скорость велосипедиста равна 16+4=20
ответ:пешеход=4; велосипедист=20
раз по условию задачи корни уравнения противоположны, то
(-b+корень из дискриминанта)/2a = - (-b-корень из дискриминанта)/2a
получается -b = b, следовательно b = 0
в нашем случае b это pp-9
pp-9=0, следовательно p = 3 или p = -3
допустим p = 3, тогда
6xx - 15 + 2 = 0
6xx = 13
x = +-корень из (13/6)
допустим p = -3, тогда
6xx + 15 + 2 = 0
6xx = -17
т.е. х получается комплексное число (я не знаю в каком сейчас классе их изучают)
значит скорей всего допустимое только p = 3, и х = +-корень из (13/6)