В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
топфифа2
топфифа2
28.06.2020 22:05 •  Алгебра

Найти общие интегралы дифф уравнений сделать проверку

Показать ответ
Ответ:
energy525
energy525
02.11.2020 14:31
Уравнение ax^2+4x-3=0

Во-первых, а ≠ 0, иначе будет только одно решение.
Во-вторых, дискриминант д.б. больше нуля, чтобы было два различных действительных корня исходного уравнения, т.е.:

D = 4^2 -4*a*(-3) = 16+12a \ \textgreater \ 0 \\ \\ a \ \textgreater \ - \frac{4}{3}

В-третьих, используем Виета:

x_1 + x_2 = - \frac{4}{a} \\ \\ x_1 * x_2 = \frac{-3}{a} = - \frac{3}{a}

Возведём обе части первого уравнения в квадрат:

(x_1 + x_2)^2 = (- \frac{4}{a} )^2 \\ \\ x_1^2 + 2x_1 x_2 + x_2^2 = \frac{16}{a^2} \\ \\ x_1^2 + x_2^2 = \frac{16}{a^2} - 2x_1 x_2

При этом:

x_1 * x_2 = - \frac{3}{a} \\ \\ 2x_1 x_2 = - \frac{6}{a}

И получаем такое выражение для суммы квадратов корней:

x_1^2 + x_2^2 = \frac{16}{a^2} - (- \frac{6}{a}) = \frac{16}{a^2} + \frac{6}{a} = \frac{6a + 16}{a^2} \ \textgreater \ 10 \\ \\ 10a^2 \ \textless \ 6a + 16 \\ \\ 10a^2 -6a -16 \ \textless \ 0 \\ \\ 5a^2 -3a -8 \ \textless \ 0

Решаем неравенство. В нуль выражение обращается при следующих значениях а.

5a^2 -3a -8 \ \textless \ 0 \\ \\ D = (-3)^2 - 4*5*(-8) = 169 \\ \\ a_1 = \frac{3- \sqrt{169} }{2*5} = -1 \\ \\ a_2 = \frac{3+ \sqrt{169} }{2*5} = 1,6

Само неравенство выполняется при -1 \ \textless \ a \ \textless \ 1,6.
С учётом ограничений в пунктах 1 и 2: a≠0 и a \ \textgreater \ - \frac{4}{3}, получаем общее решение:

a ∈ (-1; 0) ∪ (0; 1,6)
0,0(0 оценок)
Ответ:
СашаБагнюк22
СашаБагнюк22
11.11.2022 12:35
Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота