На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля. 2 + 1 = 3 кг сплава.
Первая шахта: 60 рабочих; 5 рабочих часов в день; 2 кг алюминия или 3 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 60*5 = 300 часов. 1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля. Для 3 кг сплава требуется 1/3 часа на добычу 1 кг никеля и 1 час на добычу 2 кг алюминия. 1 час + 1/3 часа = часа.
Пропорция часа - 3 кг сплава 300 часов - Х кг сплава кг сплава ------------------------------------------ Вторая шахта: 260 рабочих, 5 рабочих часов в день, 3 кг алюминия или 2 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 260*5 = 1300 часов. 1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля. 1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия. Для 3 кг сплава требуется 1/2 часа для добычи 1 кг никеля и 1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия. 1/2 часа + 2/3 часа = часа.
Пропорция часа - 3 кг сплава 1300 часов - Х кг сплава кг сплава
Обе шахты могут обеспечить завод металлом для получения кг сплава
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Первая шахта: 60 рабочих; 5 рабочих часов в день;
2 кг алюминия или 3 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день: 60*5 = 300 часов.
1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля.
Для 3 кг сплава требуется
1/3 часа на добычу 1 кг никеля и
1 час на добычу 2 кг алюминия.
1 час + 1/3 часа = часа.
Пропорция
часа - 3 кг сплава
300 часов - Х кг сплава
кг сплава
------------------------------------------
Вторая шахта: 260 рабочих, 5 рабочих часов в день,
3 кг алюминия или 2 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день: 260*5 = 1300 часов.
1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля.
1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия.
Для 3 кг сплава требуется
1/2 часа для добычи 1 кг никеля и
1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия.
1/2 часа + 2/3 часа = часа.
Пропорция
часа - 3 кг сплава
1300 часов - Х кг сплава
кг сплава
Обе шахты могут обеспечить завод металлом для получения
кг сплава
ответ: кг сплава.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».