В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
nikitabelokon21
nikitabelokon21
29.08.2022 08:54 •  Алгебра

Найти предел функции при x-> 0 lim (1-cos4x)/(2tan2x)

Показать ответ
Ответ:
mariyaskobenko1
mariyaskobenko1
23.05.2020 18:28

по записи никаких степеней нет!

 

x->0 lim (1-cos4x)/(2tan2x)=используя формулу понижения степеня синуса

x->0 lim (2*sin^{2} 2x))/(2tan2x)=используя формулу соотношения sin x=cos x*tg x

=x->0 lim sin (2x)cos (2x)=используя формул двойног оугла для синуса

x->0 lim 1/2*sin (2x)=неопределелнности нет, подставляем значение 0 вместо переменной

1/2*sin (2*0)=0

ответ: 0

 

если что то ^ - позначают степень

sin^{2} 2x - синусв квадрате от 2х

 

x->0 lim (1-cos4x)/(2xtan2x)=используя формулу понижения степеня синуса

x->0 lim (2*sin^{2} 2x))/(2xtan2x)=используя формулу соотношения sin x=cos x*tg x

=x->0 lim sin (2x)cos (2x)/x=используя формул двойного угла для синуса

2x->0 lim sin (2x)/2x=если х->0, то это равносильно 2x->0

используя замечательный предел

t->0 lim sin t/t=1

=1

ответ: 1

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота