В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
tokio3
tokio3
05.07.2022 14:17 •  Алгебра

Найти промежуток монотонности функции а)f(x)=3x³-6x+1 б)f(x)=24x³3x²-3x+7

Показать ответ
Ответ:
Zcnayper
Zcnayper
08.10.2020 20:15
При f'(x)>0 функция монотонно возрастает
при f'(x)<0 функция монотонно убывает

a)
f(x)=3x^3-6x+1 \\ f'(x)=9x^2-6 \\ \\ 9x^2-6\ \textgreater \ 0 \\ (x- \frac{ \sqrt{6} }{3} )(x+ \frac{ \sqrt{6} }{3})\ \textgreater \ 0 \\ \\ x \in (-\infty;- \frac{ \sqrt{6} }{3} ) \cup ( \frac{ \sqrt{6} }{3} ;+\infty)
возрастает 

убывает:
x \in (- \frac{ \sqrt{6} }{3} ; \frac{ \sqrt{6} }{3} )

б)
y=24x^3-3x^2-3x+7 \\ y'=72x^2-6x-3 \\ \\ 72x^2-6x-3=0 \\ D=36+864=900=30^2 \\ x_1=(6+30)/144 = \frac{36}{144 } = \frac{1}{4} \\ \\ x_2=(6-30)/144=- \frac{1}{6}
возрастает:
x \in (-\infty;- \frac{1}{6} ) \cup ( \frac{1}{4} ;+\infty)

убывает:
x \in (- \frac{1}{6} ; \frac{1}{4} )
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота