√x*(√y+1) dy/dx = y
√x*(√y+1) dy = y dx
(√y+1)dy/y = dx/√x
найдем интеграл обеих сторон
integral (√y+1)dy/y = integral dx/√x
integral ((y^½)/y+1/y) dy = integral x^(-½) dx
integral (y^(-½)+1/y) dy = integral x^(-½) dx
(y^½)/½ + lny = (x^½)/½ +C
2y^½ + lny = 2x^½ +C
2y^½ - 2x^½ + lny = C
√x*(√y+1) dy/dx = y
√x*(√y+1) dy = y dx
(√y+1)dy/y = dx/√x
найдем интеграл обеих сторон
integral (√y+1)dy/y = integral dx/√x
integral ((y^½)/y+1/y) dy = integral x^(-½) dx
integral (y^(-½)+1/y) dy = integral x^(-½) dx
(y^½)/½ + lny = (x^½)/½ +C
2y^½ + lny = 2x^½ +C
2y^½ - 2x^½ + lny = C