В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
AngelRush0
AngelRush0
07.02.2020 03:33 •  Алгебра

Найти сумму первых десяти членов арифметической прогрессии, в которой а1=-8 , d=24.

Показать ответ
Ответ:
mstatyankasor
mstatyankasor
18.07.2021 08:18

V(пирамида) = 8 (куб. ед.)

Объяснение:

Дано (см. рисунок):

  S(ABCD) – правильная пирамида

  ABCD – основание

  AB = BC = CD = DA = 2

  AE = BE = CE = DE =√38  

Найти: V(пирамида)

Объём пирамиды определяется по формуле

V(пирамида) = 1/3 • S(ABCD) • h.

Так как пирамида является правильной, то в её основании лежит правильный четырёхугольник – квадрат ABCD со сторонами AB=BC=CD=DA=2, площадь которого равна S(ABCD) = AB²=2²=4.

Далее найдём неизвестную высоту пирамиды h=EF.  

Рассмотрим прямоугольный треугольник ABC (здесь ∠B прямой, так как является углом квадрата ABCD). По теореме Пифагора  

AC²=AB²+BC²=2²+2²=4+4=8 или AC=√8.  

По свойству квадрата диагонали точкой пересечения делятся пополам, следовательно,

AF=FC=AC/2=(√8)/2=√(8/4) = √2.

Высота пирамиды EF перпендикулярна к плоскости основания ABCD, а также ко всем прямым, лежащим в этой плоскости. В частности, EF⊥AF, поэтому треугольник AFE является прямоугольным. Снова применим теорему Пифагора, согласно которой AE²=AF²+EF².

Отсюда  

h²=EF²=AE²–AF²=(√38)²–(√2)²=38–2=36=62 или h=6.

Подставляя найденные значения S(ABCD) = 4 и h=6, получим искомый объём пирамиды

V(пирамида) = 1/3 • 4 • 6 = 8 (куб. ед.).


Найдите объём правильной четырёхугольной пирамиды, сторона основания которой равна 2, а боковое ребр
0,0(0 оценок)
Ответ:
zephy
zephy
21.08.2020 12:46
Воспользуемся тем, что угловые коэффициенты  перпендикулярных прямых k1*k2=-1
5y+x-4=0
y=-1/5*x+4/5    k1=-1/5 
k2=-1/(-1/5)=5 - угловой коэффициент касательной(-ых) к графику функции f(x)=x^3+2x+1 в точке(-ах) x0, т.е. f'(x0)
находим производную и приравниваем ее к 5, чтобы найти x0.
f'(x)=3x^2+2
f'(x0)=3x0^2+2=5
x0^2=1
x01=1   x02=-1
таких касательных, как выходит, будет две
найдем f(x01) и f(x02)
f(x01)=1^3+2*1+1=4     f(x02)=(-1)^3+2*(-1)+1=-2
уравнение касательной к графику функции f(x) в точке x01 имеет вид y=4+5(x-1)
уравнение касательной к графику функции f(x) в точке x02 имеет вид y=-2+5(x-(-1))=-2+5(x+1)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота