Так как пирамида является правильной, то в её основании лежит правильный четырёхугольник – квадрат ABCD со сторонами AB=BC=CD=DA=2, площадь которого равна S(ABCD) = AB²=2²=4.
Далее найдём неизвестную высоту пирамиды h=EF.
Рассмотрим прямоугольный треугольник ABC (здесь ∠B прямой, так как является углом квадрата ABCD). По теореме Пифагора
AC²=AB²+BC²=2²+2²=4+4=8 или AC=√8.
По свойству квадрата диагонали точкой пересечения делятся пополам, следовательно,
AF=FC=AC/2=(√8)/2=√(8/4) = √2.
Высота пирамиды EF перпендикулярна к плоскости основания ABCD, а также ко всем прямым, лежащим в этой плоскости. В частности, EF⊥AF, поэтому треугольник AFE является прямоугольным. Снова применим теорему Пифагора, согласно которой AE²=AF²+EF².
Отсюда
h²=EF²=AE²–AF²=(√38)²–(√2)²=38–2=36=62 или h=6.
Подставляя найденные значения S(ABCD) = 4 и h=6, получим искомый объём пирамиды
Воспользуемся тем, что угловые коэффициенты перпендикулярных прямых k1*k2=-1 5y+x-4=0 y=-1/5*x+4/5 k1=-1/5 k2=-1/(-1/5)=5 - угловой коэффициент касательной(-ых) к графику функции f(x)=x^3+2x+1 в точке(-ах) x0, т.е. f'(x0) находим производную и приравниваем ее к 5, чтобы найти x0. f'(x)=3x^2+2 f'(x0)=3x0^2+2=5 x0^2=1 x01=1 x02=-1 таких касательных, как выходит, будет две найдем f(x01) и f(x02) f(x01)=1^3+2*1+1=4 f(x02)=(-1)^3+2*(-1)+1=-2 уравнение касательной к графику функции f(x) в точке x01 имеет вид y=4+5(x-1) уравнение касательной к графику функции f(x) в точке x02 имеет вид y=-2+5(x-(-1))=-2+5(x+1)
V(пирамида) = 8 (куб. ед.)
Объяснение:
Дано (см. рисунок):
S(ABCD) – правильная пирамида
ABCD – основание
AB = BC = CD = DA = 2
AE = BE = CE = DE =√38
Найти: V(пирамида)
Объём пирамиды определяется по формуле
V(пирамида) = 1/3 • S(ABCD) • h.
Так как пирамида является правильной, то в её основании лежит правильный четырёхугольник – квадрат ABCD со сторонами AB=BC=CD=DA=2, площадь которого равна S(ABCD) = AB²=2²=4.
Далее найдём неизвестную высоту пирамиды h=EF.
Рассмотрим прямоугольный треугольник ABC (здесь ∠B прямой, так как является углом квадрата ABCD). По теореме Пифагора
AC²=AB²+BC²=2²+2²=4+4=8 или AC=√8.
По свойству квадрата диагонали точкой пересечения делятся пополам, следовательно,
AF=FC=AC/2=(√8)/2=√(8/4) = √2.
Высота пирамиды EF перпендикулярна к плоскости основания ABCD, а также ко всем прямым, лежащим в этой плоскости. В частности, EF⊥AF, поэтому треугольник AFE является прямоугольным. Снова применим теорему Пифагора, согласно которой AE²=AF²+EF².
Отсюда
h²=EF²=AE²–AF²=(√38)²–(√2)²=38–2=36=62 или h=6.
Подставляя найденные значения S(ABCD) = 4 и h=6, получим искомый объём пирамиды
V(пирамида) = 1/3 • 4 • 6 = 8 (куб. ед.).
5y+x-4=0
y=-1/5*x+4/5 k1=-1/5
k2=-1/(-1/5)=5 - угловой коэффициент касательной(-ых) к графику функции f(x)=x^3+2x+1 в точке(-ах) x0, т.е. f'(x0)
находим производную и приравниваем ее к 5, чтобы найти x0.
f'(x)=3x^2+2
f'(x0)=3x0^2+2=5
x0^2=1
x01=1 x02=-1
таких касательных, как выходит, будет две
найдем f(x01) и f(x02)
f(x01)=1^3+2*1+1=4 f(x02)=(-1)^3+2*(-1)+1=-2
уравнение касательной к графику функции f(x) в точке x01 имеет вид y=4+5(x-1)
уравнение касательной к графику функции f(x) в точке x02 имеет вид y=-2+5(x-(-1))=-2+5(x+1)