В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
leafpool1
leafpool1
03.05.2020 12:28 •  Алгебра

Назовем число особым, если его можно представить в виде m^2 +2n^2, где m и n – целые числа. докажите, что произведение двух особых чисел есть особое число.

Показать ответ
Ответ:
SYSTEMCORE
SYSTEMCORE
03.10.2020 14:49
Q1=(a² +2b²)  первое число
q2=(m² +2n²)  второе число
q1*q2=(a² +2b²) *(m²+2n²) =a²m² +2m²b²+2a²n²+4b²n²=
=(am)²+(2bn)² +2((mb)²+(an)²)
До полного квадрата не хватает выражения 
в первой скобке 4ambn добавляешь и вычитаешь его
(am)²+(2bn)²+4ambn-4ambn +2((mb)²+(an)²)=(am+2bn)²-4ambn + 2((mb)²+(an)²)
внесем -4ambn в скобку 2((mb)²+(an)²)
(am+2bn)²+2(mb)²+(an)²-2ambn)=(am+2bn)²+2(mb-an)²
произведем замену x=(am+2bn)   y=(mb-an)
получим q1*q2=x²+2y² что и требовалось доказать
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота