С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
1) 2x - 3y = 6
Точки пересечения с осью Ох: принимаем у=0
2x - 3*0 = 6
2x = 6
x = 3
(3;0) - точка пересечения с осью Ох
Точки пересечения с осью Оу: принимаем х=0
2*0 - 3у = 6
-3у = 6
у = -2
(0;-2) - точка пересечения с осью Оу.
2) x² + y = 4
Точки пересечения с осью Ох: принимаем у=0
x² + 0 = 4
x² = 4
x = ± 2
(-2;0), (2;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х=0
0² + у = 4
у = 4
(0;4) - точка пересечения с осью ординат.
3) |x| + |y| = 7
Точки пересечения с осью Ох: принимаем у = 0.
|x| + |0| = 7
|x| = 7
x = ± 7
(-7;0), (7;0) - точки пересечения с осью абсцисс.
Точки пересечения с осью Оу: принимаем х = 0.
|0| + |y| = 7
|y| = 7
y = ± 7
(0;-7), (0;7) - точки пересечения с осью ординат.
Объяснение: