поскольку при каждом броске возможны только 2 исхода (орел или решка), то при 9 бросках возможны 2⁹ исходов. Из них количество исходов ровно с 5 выпадениями орла равно 9!/[5!(9-5)!], следовательно вероятность выпадения орла ровно 5 раз равна {9!/[5!(9-5)!]}/2⁹
(1)
(2)
где х, y - некоторые натуральные числа
Предположим что
тогда из второго соотношения (2) следует что
где k - некоторое натуральное число
откуда
а значит число |16a-9b| сложное если
и
Рассмотрим варианты
1)
что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел
(доказательство єтого факта
=>x=1; y=0
)
2)
=> k - ненатуральное -- невозможно
3)
=> k - ненатуральное - невозможно
тем самым окончательно доказали,что исходное утверждение верно.
Случай когда
Учитывая симметричность выражений a+b=b+a, ab=ba
доказывается аналогично.
Доказано
поскольку при каждом броске возможны только 2 исхода (орел или решка), то при 9 бросках возможны 2⁹ исходов. Из них количество исходов ровно с 5 выпадениями орла равно 9!/[5!(9-5)!], следовательно вероятность выпадения орла ровно 5 раз равна {9!/[5!(9-5)!]}/2⁹
Повторив аналогичные рассуждения, получим вероятность выпадения орла ровно 2 раза {9!/[2!(9-2)!]}/2⁹
найдем их отношение [{9!/[5!(9-5)!]}/2⁹]/[{9!/[2!(9-2)!]}/2⁹]=[2!(9-2)!]/[5!(9-5)!]= (1*2*1*2*3*4*5*6*7)/(1*2*3*4*5*1*2*3*4)=(6*7)/(3*4)=3.5
вероятность выпадения орлов ровно 5 раз в 3,5 раза выше, чем вероятность выпадения ровно 2 раза