В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Pustynya
Pustynya
27.05.2023 10:51 •  Алгебра

Не выполняя построения, найдите координаты точек пересечения графика функции у= 1 целая 2/7 х- 4/9 с осью х и осью у.

Показать ответ
Ответ:
аннасерб
аннасерб
05.08.2020 00:34

Формула для суммы первых n членов геометрической прогрессии:

Sn = b₁·(q^n - 1)/(q - 1)

Для 8 членов геометрической прогрессии

S₈ = b₁·(q⁸ - 1)/(q - 1)

Формула для n-го члена геометрической прогрессии:

bn = b₁·q^(n-1)

n = 6    b₆ = b₁·q⁵

n = 4    b₄ = b₁·q³

n = 3    b₃ = b₁·q²

По условию:

b₆ -  b₄  = 72

b₃ -  b₁  = 9

или

b₁·q⁵ -  b₁·q³  = 72   

b₁·q² - b₁ = 9           

Преобразуем эти выражения

b₁·q³·(q² - 1) = 72     (1)

b₁·(q² - 1) = 9            (2)

Разделим (1) на (2) и получим

q³ = 8, откуда

q = 2

Из (2) найдём b₁

b₁ = 9/(q² - 1) = 9/(4 - 1) = 3

Подставим q = 2 и b₁ = 3 в S₈ = b₁·(q⁸ - 1)/(q - 1)

S₈ = 3·(2⁸ - 1)/(2 - 1) = 3·(256 - 1) = 765

ответ: S₈ = 765

 

0,0(0 оценок)
Ответ:
Davidavid
Davidavid
27.11.2022 17:13

1) y' = y³x

 \frac{dy}{dx} = \frac{y^3}{x}

Проинтегрируем обе части:

 \frac{dy}{y^3}=xdx

-\frac{1}{2y^2}=\frac{x^2}{2}+C - общее решение дифф. уравнения.

Из начального условия y(1)=1 найдем частное решение:

Подставив в общее решение, найдем С

-1/2 = 1/2 + С ⇔ С = -1/4

y = \frac{4}{1-2x^2} - частное решение дифф. уравнения.

 

2) y' - \frac{3y}{x}=x^3e^x

Для начала найдем общее решение однородного дифф. уравнения

y' - \frac{3y}{x}=0

\frac{dy}{dx} = \frac{3y}{x}

\frac{dy}{y}=\frac{3dx}{x}

Проинтегрировав, получим:

ln|y|=3ln|x| + lnC

y = Cx³ - общее решение однородного дифф. уравнения

y = C(x)x³ подставим в наше дифф. уравнение

C'(x)x^3 + 3x^2C(x) - 3C(x)x^2 = x^3e^x

C'(x)=e^x

C(x) = \int{e^x}\, dx = e^x + C_1

y = (e^x + C_1)x^3 - общее решение дифф. уравнения

Из начального условия y(1) = e найдем C₁

C₁ = 0

y = e^xx^3 - частное решение дифф. уравнения

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота