Ненулевое число а таково, что оба корня уравнения ниже целые числа. Укажите наибольшее число, которое может быть корнем этого уравнения.
Уточняем, что неизвестной в уравнении является с. Буква а обозначает параметр.
Уравнение: а^2х^2+ ax +1 — 21a^2 = 0.
из т. Виета
x1+x2=-1/a
x1*x2=1/a^2-21
---
x1*x2=(x1+x2)^2-21
x1^2+x1*x2+x2^2=21
(x1+x2/2)^2=21-3x^2/4
если правая часть отрицательна уравнение не имеет смысла, найдем те значения x2 при которых уравнение будет иметь смысл.
28-x2^2>0
-5<x2<5 так как корни целые.
Значит максимальное значение которые может принимать x2 это 5 (т.к. система симметрична x1 тоже будет <=5)
осталось понять, при x2=5 есть целые корни или нет, подставим в наше уравнение.
(x1+5/2)^2=3(28-25)/4
x1=(-5+-3)/2=-1;-4.
Ответ: наибольшее число которое может являться корнем это 5.