1) Цена карандаша k руб., цена обложки b руб. Стоимость покупки соседки по парте: 6k + 15b = 4,8 руб. (т.к. 4 р. 80 коп. = 4 ⁸⁰/₁₀₀ р. = 4,8 р.) Стоимость покупки лучшего друга: 5k + 12b = 3,9 руб. ( т.к. 3 р. 90 коп. = 3 ⁹⁰/₁₀₀ р. = 3,9 р.) Система уравнений: {6k + 15b = 4.8 |*5 {5k + 12b = 3.9 |* (-6)
Стоимость покупки соседки по парте:
6k + 15b = 4,8 руб. (т.к. 4 р. 80 коп. = 4 ⁸⁰/₁₀₀ р. = 4,8 р.)
Стоимость покупки лучшего друга:
5k + 12b = 3,9 руб. ( т.к. 3 р. 90 коп. = 3 ⁹⁰/₁₀₀ р. = 3,9 р.)
Система уравнений:
{6k + 15b = 4.8 |*5
{5k + 12b = 3.9 |* (-6)
{30k + 75b = 24
{-30k - 72b =- 23.4
Метод сложения:
(30k + 75b) + ( - 30k - 72b) = 24 + (-23.4)
(30k - 30k) + (75b - 72b) = 0.6
3b=0.6
b= 0.6 : 3
b = 0.2 (руб.) цена одной обложки
Подставим значение b=0.2 в I уравнение системы:
6k + 15*0.2 = 4,8
6k + 3 = 4.8
6k = 4.8 - 3
6k = 1.8
k= 1.8 : 6
k = 0.3 (р.) цена одного карандаша
2) 7 * 0,3 + 10 * 0,2 = 2,1 + 2 = 4,1 (р.) стоимость покупки семиклассника
3) 4 р. 40 коп. = 4,4 р.
4,4 - 4,1 = 0,3 = 30 (коп.) останется у семиклассника после совершения покупки
ответ: да, семикласснику хватит имеющихся денег на планируемую покупку.
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .