Наш план действий: 1) ищем производную 2) приравниваем её к нулю, решаем уравнение ( ищем критические точки) 3) Смотрим: какие из них попали в указанный промежуток. 4) Ищем значения данной функции в этих точках и на концах данного промежутка. 5) пишем ответ Начали? 1) у'= 3x² -18x +24 2) 3x² - 18x + 24 -0 x² - 6x +8 = 0 По т. Виета х = 2 и 4 3) в наш промежуток попало число 2 4) х = 2 у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19 х = -1 у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35 х = 3 у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17 5) max y = 19 [-1; 3]
1) 6см. 9 см. 30 см.
2) 15 км/час.
Объяснение:
Площадь прямоугольника, одна из сторон которого на 3 см больше другой, равна 54 см2.
Найдите стороны и периметр прямоугольника.
Решение.
Пусть одна сторона равна х см. Тогда другая равна х+3 см.
Площадь S=ab или S=x*(x+3);
x²+3x-54=0;
x1=6; x2= -9 - не соответствует условию.
х=6 см = величина одной из сторон.
х+3=6+3=9 см = величина второй стороны.
Периметр прямоугольника равен Р=2(a+b)=2 (6+9)=2*15=30 см.
***
2. Катер 5 км по течению
и 8 км по озеру,
затратив на весь путь 1 ч.
Скорость течения реки равна 3 км/ч.
Найдите скорость катера по течению.
Решение.
пусть х км/час - скорость катера в стоячей воде (по озеру).
Тогда по течению реки скорость будет равна х+3 км/час.
На путь 8 км по озеру катер затратил 8/х часов.
На путь 5 км по течению катер затратил 5/(х+3) часа.
На весь путь затратил 1 час.
8/х+5/(х+3)=1;
8(х+3)+5х=х(х+3);
8х+24+5х=х²+3х;
х²+3х-8х-5х-24=0;
х²-10х-24=0;
По теореме Виета
х1+х2=10; х1*х2=-24;
х1=12; x2= -2 - не соответствует условию
х=12 км/час - скорость катера в стоячей воде.
х+3= 12+3=15 км/час - скорость катера по течению.
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) Смотрим: какие из них попали в указанный промежуток.
4) Ищем значения данной функции в этих точках и на концах данного промежутка.
5) пишем ответ
Начали?
1) у'= 3x² -18x +24
2) 3x² - 18x + 24 -0
x² - 6x +8 = 0
По т. Виета х = 2 и 4
3) в наш промежуток попало число 2
4) х = 2
у = 2³ -9*2² +24*2 -1 = 8 -36 +48 -1 = 19
х = -1
у = (-1)³ - 9*(-1)² + 24*(-1) -1 = -1 -9 -24 -1= -35
х = 3
у = 3³ - 9*3² +24*3 -1 = 27 -81 +72 -1 = 17
5) max y = 19
[-1; 3]