В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
maezsa
maezsa
28.11.2020 02:37 •  Алгебра

номер 2,3,4. С решением ну если можно ❤️

Показать ответ
Ответ:
Nastyavoyko
Nastyavoyko
16.02.2020 14:47
A)y=1,2x-6 если график функции пересекается с осью ох, то координата у=0, вот и подставляем в функцию вместо у=0 и находим х. 0= 1,2x-6 1,2x=6 х=5 получается точка (5,0) если график функции пересекается с осью оу, то координата х=0, вот и подставляем в функцию вместо х=0 и находим у . y=1,2*0-6 у=-6 получается точка (0,-6) b)y=-1/4x+2 делаем аналогично с осью ох: у=0 0=-1/4x+2 1/4x=2 х=8 (8,0) с осью оу: х=0 у=-1/4*0+2 у=2 (0,2) c)y=2,7x+3 с осью ох: у=0 0=2,7x+3 2,7x=-3 х=1 1/9 ( это одна целая одна девятая) ( 1 1/9, 0) с осью оу: х=0 y=2,7*0+3 у=3 (0,3)
0,0(0 оценок)
Ответ:
cocosobanro
cocosobanro
02.12.2021 04:08

ответ: (x^4 - 2x^3 + x^2)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

вынесем x^2 в числителе первой дроби:

x^2(x^2 - 2х + 1)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

разложим на множители x^2 - 2х + 1: по теореме виета х1 + х2 = 2; х1 * х2 = 1. корни равны 1 и 1. получается x^2 - 2х + 1 = (х - 1)^2.

разложим на множители x^2 + x - 2: по теореме виета х1 + х2 = -1; х1 * х2 = -2. корни равны -2 и 1. получается x^2 + x - 2 = (х - 1)(х + 2).

неравенство приобретает вид x^2(х - 1)^2/(х - 1)(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

скобка (х - 1) сокращается, получается x^2(х - 1)/(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) < = 1.

приводим к общему знаменателю: (x^2(х - 1) - (2x^3 + x^2 + x - 1))/(x + 2) < = 1;

(x^3 - х^2 - 2x^3 - x^2 - x + 1)/(x + 2) < = 1;

(-x^3 - 2х^2 - x + 1)/(x + 2) < = 1.

переносим 1 в левую часть и приводим к общему знаменателю:

(-x^3 - 2х^2 - x + 1)/(x + 2) - 1 < = 0;

(-x^3 - 2х^2 - x + 1 - х - 2)/(x + 2) < = 0;

(-x^3 - 2х^2 - 2x - 1)/(x + 2) < = 0.

вынесем (-1) из числителя и умножим неравенство на (-1):

-(x^3 + 2х^2 + 2x + 1)/(x + 2) < = 0;

(x^3 + 2х^2 + 2x + 1)/(x + 2) > = 0.

разложим знаменатель на множители:

x^3 + 2х^2 + 2x + 1 = (x^3 + 1) + (2х^2 + 2x) = (х + 1)(х^2 - х + 1) + 2х(х + 1) = (х + 1)(х^2 - х + 1 + 2х) = (х + 1)(х^2 + х + 1).

получается неравенство (х + 1)(х^2 + х + 1)/(x + 2) > = 0.

решим неравенство методом интервалов:

найдем корни неравенства:

х + 1 = 0; х = -1.

х^2 + х + 1 = 0; d = 1 - 4 = -3 (нет корней).

х + 2 = 0; х = -2.

расставляем знаки неравенства: (+) -2 (-) -1 (+).

так как неравенство имеет знак > = 0, то решением неравенства будут промежутки (-∞; -2] и [-1; +∞).

объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота