(2+a)x^2+(1-a)x+a+5=0 Рассмотрим несколько ситуаций: 1)если старший коэффициент при x^2=0 ( при а=-2): 0*x^2+3x-2+5=0 3x+3=0 3x=-3 x=-1 Значит, a=-2 нам подходит 2) если средний коэффициент равен нулю ( при а=1): 3x^2+0*x+1+5=0 3x^2+6=0 3x^2=-6 - решений нет, значит а=1 нам не подходит. 3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля: D= (1-a)^2-4(2+a)(a+5)>=0 1-2a+a^2-4(2a+10+a^2+5a)>=0 1-2a+a^2-4(a^2+7a+10)>=0 1-2a+a^2-4a^2-28a-40>=0 -3a^2-30a-39>=0 3a^2+30a+39<=0 | :3 a^2+10a+13<=0 a^2+10a+13=0 D=10^2-4*1*13=48 a1=(-10-4V3)/2=-5-2V3 a2=-5+2V3
первая сторона a= 5см
вторая сторона b= 10см
периметр P= 30 см
Объяснение:
площадь прямоугольника:
S=ab
если одну( меньшую) сторону примем за x, то другая сторона будет (х+5), следовательно:
x×(x+5)=150 (перемножаем почленно)
x²+5x=150 ( переносим 150 в левую часть уравнения)
x²+5x-150=0 (решаем уравнение через дискриминант или теорему Виета)
D=b²-4ac=25-4×1×(-150)=25+600=625 (625>0, значит уравнение имеет два действительных корня)
x1,2=(-b±√625)/2a
x1=(-5+25)/2×1
x1=20÷2
x1=10
x2=(-5-25)/2
х2=-15 ( не удовлетворяет условиям задачи, так как длина стороны не может быть отрицательной)
следовательно x=10
значит меньшая сторона прямоугольника равна 5см, а большая сторона Равна 5+5=10см.
таким образом периметр прямоугольника ( сумма всех сторон) равен 2×(10+5)= 10+10+5+5=30см
Рассмотрим несколько ситуаций:
1)если старший коэффициент при x^2=0 ( при а=-2):
0*x^2+3x-2+5=0
3x+3=0
3x=-3
x=-1
Значит, a=-2 нам подходит
2) если средний коэффициент равен нулю ( при а=1):
3x^2+0*x+1+5=0
3x^2+6=0
3x^2=-6 - решений нет, значит а=1 нам не подходит.
3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля:
D= (1-a)^2-4(2+a)(a+5)>=0
1-2a+a^2-4(2a+10+a^2+5a)>=0
1-2a+a^2-4(a^2+7a+10)>=0
1-2a+a^2-4a^2-28a-40>=0
-3a^2-30a-39>=0
3a^2+30a+39<=0 | :3
a^2+10a+13<=0
a^2+10a+13=0
D=10^2-4*1*13=48
a1=(-10-4V3)/2=-5-2V3
a2=-5+2V3
+[-5-2V3]-[-5+2V3]+
"-2" - входит в этот промежуток
ответ: x e [-5-2V3] U [-5+2V3]