1) =x+1-1/x-3=x/x-3
меняем знаки под модулем: (х-1)/(x+3)=1
x-1-1/x+3=x-2/x+3
2) =x2-x+3x=-1+1
x2=-2
x=-1
x=2
x2+x+1=3x-1
x2+x-3x+-1-1
x2-2x=-2
x2-2x+2=0
d=-4=> нет корней
3) = x-x=1+5=6
x+4=x-1
x-x=-1-4=-5
4) =2x+1-2x-2=4
2x-2x=4-1+2=4
2x-1-2x+2=4
2x-2x=4+1-2=3
5) =x2-x-1=0
d=3=> нет корней
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек
1) =x+1-1/x-3=x/x-3
меняем знаки под модулем: (х-1)/(x+3)=1
x-1-1/x+3=x-2/x+3
2) =x2-x+3x=-1+1
x2=-2
x=-1
x=2
x2+x+1=3x-1
x2+x-3x+-1-1
x2-2x=-2
x2-2x+2=0
d=-4=> нет корней
3) = x-x=1+5=6
x+4=x-1
x-x=-1-4=-5
4) =2x+1-2x-2=4
2x-2x=4-1+2=4
2x-1-2x+2=4
2x-2x=4+1-2=3
5) =x2-x-1=0
d=3=> нет корней