В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
SnikerS205
SnikerS205
22.04.2023 04:13 •  Алгебра

Нужно написать числовые множества с картинки в виде системы линейных неравенств.​

Показать ответ
Ответ:
dashylasonimova128
dashylasonimova128
04.05.2021 11:02
Х шт. - деталий делал за 1 день второй работник.
х+2 (шт.) - деталей делал за 1 день первый работник, так как он делал в 1 день на 2 детали больше, чем второй, из  условия задачи.
8(х+2) (шт.) - деталей сделал за 8 дней первый рабочий.
5х (шт.) - деталей сделал за 5 дней второй рабочий.
8(х+2)+5х=237 (шт.) - деталей всего сделали два работника, из условия задачи.
Тогда:
8(х+2)+5х=237
8х+8*2+5х=237
13х+16=237
13х=237-16
13х=221
х=221/13
х=17 (шт.) - деталей делал за 1 день второй рабочий.
17+2=19 (шт.) - деталей делал за 1 день первый рабочий.
Проверка:
19*8+17*5=152+85=237 (шт.) - деталей всего сделали два рабочих.
ответ: 19шт.; 17шт.
0,0(0 оценок)
Ответ:
vipvip16tk
vipvip16tk
27.03.2021 01:37

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Иррациональные числа

ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π

Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].

К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота