В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
kolesnik23
kolesnik23
08.07.2021 23:46 •  Алгебра

нужно!! Представьте в виде дроби
выражения.
2)4/x-3/xy
4)6p/5xy+4k/3xy^2-3m/4x^2y
6)6x^2-3x+2/x^2y-3x-2/xy​

Показать ответ
Ответ:
svitaliy360
svitaliy360
12.03.2023 21:44
Решение
Найдите координаты точек, в которых касательные к графику функции 
y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс.
 Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент  k = - 1.
k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² =
= - 4 /(x - 3)²
y` = - 1
- 4 / (x - 3)² = - 1
x² - 6x + 9 = 4
x² - 6x + 5 = 0
x₁ = 1
x₂ = 5
y₁ = - 1
y₂ = 3
Запишем уравнения этих касательных:
1) y = - (x - 1) - 1
2) y = - (x - 5) + 3
Касательные пересекают ось абсцисс, значит, y = 0
Таким образом, если у = 0, то
1) y = - (x - 1) - 1
- (x - 1) - 1 = 0
 x = 0
2) y = - (x - 5) + 3
- (x - 5) + 3 = 0
 x = 8
ответ:     (0; 0) ; (8; 0)

2)  y = √x     y₀ = 2
y = y(x₀) + y`(x₀)*(x - x₀)  - уравнение касательной
если у₀ = 2, то
2 = √x
x₀ = 4 абсцисса точки
а) y(x₀) = y(4) = √4 = 2
б) y` = 1/2√x
y` = 1/2√4 = 1/(2*2) = 1/4
в)  y = 2 + (1/4)*(x - 4)
y = 2 + (1/4)*x - (1/4)*4
y = 2 + (1/4)*x - 1
y = (1/4)*x + 1 - уравнение касательной в точке
0,0(0 оценок)
Ответ:
milenaborowik
milenaborowik
27.03.2023 14:15
\sqrt{x+3} \geq x+3
Решение
Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы:
x+3 \geq (x+3)^2
x+3 \geq x^2+6x+9
Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю:
-x^2-5x-6 \geq0
-x^2-5x-6=0
График функции - парабола. Ветви вниз, так как коэффициент при x^2.
D=b^2-4ac
D=(-5)^2-4*(-1)*(-6)=25-24=1
Найдем корни квадратного уравнения:
x_{1,2}= \frac{-bб \sqrt{D} }{2a}
x_{1}= \frac{-(-5)+1}{2*(-1)} =- \frac{6}{2} =-3
x_{2}= \frac{-(-5)-1}{2*(-1)} =- \frac{4}{2} =-2
Корни квадратного уравнения - точки пересечения с осью X.
Так как условие неравенства \geq - больше или равно, то интервал включает в себя значения корней уравнения.
ответ: а) [-3;-2]

Множеством решений неравенство корень x+3 больше или равно x+3 является: а)[-3; -2] б) [-3; +бесконе
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота