На складе стеклотары хранятся банки емкостью 0,5 л, 0,7 л и 1 л. Сейчас на складе 2500 банок общей емкостью 2000 л. Докажите, что на складе есть хотя бы одна 0,5 литровая банка.
Пусть банки по 0.5 л - x; по 0.7 л - y; по 1 л - z. Составим систему уравнений:
Допустим, что банки по 0.5л отсутствуют. Тогда x = 0. Попробуем решить систему:
Умножаем второе уравнение на 0,7:
0.3z=250
z = 250 : 0,3
Целочисленного решения данной системы не существует. Учитывая, что 1 банка = 1 единице утверждение отсутствия банок емкостью 0.5 л ложно! А значит, есть хотя бы одна 0.5 литровая банка.
y = log₂( -4x² + 16x + 20) - логарифмическая функция с основанием 2 > 1
⇒ большему значению аргумента соответствует большее значение функции, т.е. достаточно найти наибольшее значение выражения под логарифмом, чтобы найти максимум логарифмической функции.
f(x) = -4x² + 16x + 20 - квадратичная функция.
График - квадратичная парабола, ветви направлены вниз.
Точка максимума - вершина параболы
Координата вершины параболы
x₀ = 2 ∈ ОДЗ ⇒
x₀ = 2 - точка максимума функции y = log₂(-x² + 4x + 5) + 2
На складе стеклотары хранятся банки емкостью 0,5 л, 0,7 л и 1 л. Сейчас на складе 2500 банок общей емкостью 2000 л. Докажите, что на складе есть хотя бы одна 0,5 литровая банка.
Пусть банки по 0.5 л - x; по 0.7 л - y; по 1 л - z. Составим систему уравнений:
Допустим, что банки по 0.5л отсутствуют. Тогда x = 0. Попробуем решить систему:
Умножаем второе уравнение на 0,7:
0.3z=250
z = 250 : 0,3
Целочисленного решения данной системы не существует. Учитывая, что 1 банка = 1 единице утверждение отсутствия банок емкостью 0.5 л ложно! А значит, есть хотя бы одна 0.5 литровая банка.
Ч.Т.Д
y = log₂(-x² + 4x + 5) + 2
ОДЗ : -x² + 4x + 5 > 0
-(x² - 4x - 5) > 0 ⇔ x² - 4x - 5 < 0 ⇔
(x - 5)(x + 1) < 0
Метод интервалов
+++++++ (-1) -------- (5) ++++++++ >>> x
ОДЗ : x ∈ (-1; 5)
y = log₂(-x² + 4x + 5) + 2 = log₂(-x² + 4x + 5) + log₂4 =
= log₂ ( ( -x² + 4x + 5) * 4) = log₂( -4x² + 16x + 20)
y = log₂( -4x² + 16x + 20) - логарифмическая функция с основанием 2 > 1
⇒ большему значению аргумента соответствует большее значение функции, т.е. достаточно найти наибольшее значение выражения под логарифмом, чтобы найти максимум логарифмической функции.
f(x) = -4x² + 16x + 20 - квадратичная функция.
График - квадратичная парабола, ветви направлены вниз.
Точка максимума - вершина параболы
Координата вершины параболы
x₀ = 2 ∈ ОДЗ ⇒
x₀ = 2 - точка максимума функции y = log₂(-x² + 4x + 5) + 2
Максимальное значение функции :y(2) = log₂(-2² + 4*2 + 5) + 2 = log₂9 + 2 = 2( log₂3 + 1)
ответ: точка максимума х₀ = 2