Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Чтобы решить систему:
7x - 3y = 13;
x - 2y = 5,
Мы с вами применим метод подстановки. Первым действием из второго уравнения системы выражаем одну переменную через другую (переменную x через y).
Система:
7x - 3y = 13;
x = 5 + 2y;
Подставляем в первое уравнение 7x - 3y = 13 вместо x выражение 5 + 2y из второго и получаем:
x = 5 + 2y;
7(5 + 2y) - 3y = 13;
Ищем значение переменной y:
7 * 5 + 7 * 2y - 3y = 13;
35 + 14y - 3y = 13;
11y = -22;
y = -2.
Система уравнений:
x = 5 + 2 * (-2) = 5 - 4 = 1;
y = -2
ответ: (1; -2) решение системы.