обозначим образно в левой части уравнения дроби а и 1/а соответственно.
используем свойство неравенства коши:
среднее арифметическое ≥ среднего геометрического, →
среднее арифметическое:
(а + 1/а) /2
среднее геометрическое:
²√(а*(1/а)) = √(а/а) = √1 =1
то есть (а + 1/а)/2≥1
или а + 1/а≥2
учитывая введённые обозначения получаем, что левая часть исходного уравнения ≥2,
соответственно правая часть исходного уравнения также должна быть ≥2:
√(3+2х-х²)≥2
или
3+2х-х²≥4
0≥4-3-2х+х²
х²-2х+1≤0
(х-1)²≤0
так как (х-1)²≥0 при любом х, то (х-1)²≤0 имеет решение лишь при х-1=0 или х=1
подставив х в исходное уравнение убеждаемся, что данное решение принадлежит одз и действительно является решением (если бы не подошло, то уравнение не имело бы решений)
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
х=1
Объяснение:
обозначим образно в левой части уравнения дроби а и 1/а соответственно.
используем свойство неравенства коши:
среднее арифметическое ≥ среднего геометрического, →
среднее арифметическое:
(а + 1/а) /2
среднее геометрическое:
²√(а*(1/а)) = √(а/а) = √1 =1
то есть (а + 1/а)/2≥1
или а + 1/а≥2
учитывая введённые обозначения получаем, что левая часть исходного уравнения ≥2,
соответственно правая часть исходного уравнения также должна быть ≥2:
√(3+2х-х²)≥2
или
3+2х-х²≥4
0≥4-3-2х+х²
х²-2х+1≤0
(х-1)²≤0
так как (х-1)²≥0 при любом х, то (х-1)²≤0 имеет решение лишь при х-1=0 или х=1
подставив х в исходное уравнение убеждаемся, что данное решение принадлежит одз и действительно является решением (если бы не подошло, то уравнение не имело бы решений)