В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
platymax
platymax
10.03.2020 22:48 •  Алгебра

Огромная решить и прикрепить полное решение и ответы. Буду очень благодарна. Очень

Показать ответ
Ответ:
miwe10
miwe10
05.08.2020 04:48
Трактовка задач:
1) так как нам дана функция, s(t) это значит что это некое расстояние. Если от этого «расстояния» взять производную, то получим скорость роста.
Берём производную, и после его в t подставляем 4. И находим скорость. Она будет 60м/с. Метры, потому что функция задана с S, в условии это метры.
2) так как k=f'(х₀)=tgα
А x₀=1 то найдём производную функции,
И подставим в производную этот икс нулевой. Получаем -2 tg a=-2
Отсюда находим а.
Последнее задание немного у меня не взлезло, извините
плс , Алгебра. Если можно, оветы с решениями и обьяснениями.
0,0(0 оценок)
Ответ:
briliant2
briliant2
04.01.2020 15:08

Пусть \varepsilon - канонический базис в \mathbb{R}^{3}.

Тогда матрицу перехода T_{e \rightarrow e'} можно найти следующим образом:

T_{e \rightarrow e'} = T_{e \rightarrow \varepsilon} \cdot T_{\varepsilon \rightarrow e'} = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Если записать блочную матрицу \left(\begin{array}{c|c}T_{\varepsilon \rightarrow e}&T_{\varepsilon \rightarrow e'}\end{array}\right) и привести путем элементарных преобразований к виду \left(\begin{array}{c|c}E&X\end{array}\right), то X = T_{\varepsilon \rightarrow e}^{-1} \cdot T_{\varepsilon \rightarrow e'}

Матрицу T_{\varepsilon \rightarrow e} легко получить: достаточно записать в столбцы координаты векторов базиса e. Аналогично с матрицей T_{\varepsilon \rightarrow e'}.

В итоге необходимо получить вид \left(\begin{array}{c|c}E&X\end{array}\right) следующей матрицы:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\2&2&-1&5&8&1\\3&-3&2&-1&9&2\end{array}\right)

Вычтем первую строку из второй и третьей:

\left(\begin{array}{ccc|ccc}2&-1&1&5&7&1\\0&3&-2&0&1&0\\1&-2&1&-6&2&1\end{array}\right)

Вычтем из первой строки 2 третьих и поменяем их местами:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&3&-1&17&3&-1\end{array}\right)

Вычтем из третьей строки вторую:

\left(\begin{array}{ccc|ccc}1&-2&1&-6&2&1\\0&3&-2&0&1&0\\0&0&1&17&2&-1\end{array}\right)

Прибавим ко второй строке 2 третьих и вычтем из первой третью:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&3&0&34&5&-2\\0&0&1&17&2&-1\end{array}\right)

Делим вторую строку на 3:

\left(\begin{array}{ccc|ccc}1&-2&0&-23&0&2\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

Прибавляем в первой строке 2 вторых:

\left(\begin{array}{ccc|ccc}1&0&0&{-\frac{1}{3}}&\frac{10}{3}&\frac{2}{3}\\0&1&0&\frac{34}{3} &\frac{5}{3}&{-\frac{2}{3}}\\0&0&1&17&2&-1\end{array}\right)

\frac{1}{3}\left(\begin{array}{ccc}-1&10&2\\34&5&-2\\51&6&-3\end{array}\right).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота